
 
 

 

  

Abstract—Cognitive, motor and perceptual processes 
diminish with age and thus limit adaptive capabilities of older 
individuals. Our hypothesis is that with aging there is 
decreased expression of these proactive adaptive capabilities. 
These experiments were designed to test this hypothesis by 
implementing an integrated approach to quantifying 
physiological characteristics in older individuals. We are 
working towards building an integrated wireless motion 
capture and physiological data monitoring system to quantify 
and data mine various physiologic and motoric streams in a 
controlled experimental environment. In this paper, 
synchronized motion capture and EMG data was obtained in 
young and old subjects performing a cognitive-motor task. We 
show that some, but not all baseline measures were 
significantly different in older compared to young subjects. 
Quantification of these baseline measures will allow us to 
develop new experimental paradigms that compensate for age-
related decline in motor control, sensation, and cognition 
through brain-plasticity targeted training in rich learning 
environments.  

 
Index Terms—motion capture, electromyography, analysis of 

variance, principal component analysis.   

I. INTRODUCTION 
NTIL recently, the dominant view was that aging was 
associated with irreversible cognitive and motor 

decline. Poor performance on cognitive and motor tasks and 
subsequent difficulty in performing goal-directed behavior 
are prevalent among the elderly [1]. This is thought to result 
from a decline in proactive processes in the brain [2] with 
eventual decline in cognitive and motor preparedness. For 
example, a ball thrown unexpectedly to an elderly person 
prompts a reaction of avoidance rather than the proactive 
preparedness leading to a safe catch. The leg muscle 
compensation expected when raising arms diminishes with 
age resulting in a loss of balance. Thus, with aging, there is 
an increase in the time it takes for the adaptive proactive 
processes to set in resulting in poor compensation [3].   

The increased response latency observed in older adults 
can result from a perceptual, cognitive or motor deficit or a 
combination of deficits. Moreover, age-related changes in 
the musculoskeletal system and muscle physiology also 
contribute to motor slowing [4]-[6]. Given the dynamic 
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nature of this study, it is not possible to separate out the 
perceptual, cognitive or motor components of the task at 
hand. Rather, the primary objective of this initial study is to 
quantify the timing of movement dynamics and muscle 
activation patterns while performing a cognitive-motor task. 
The task we chose was a jump in which a visual cue 
signaled the subject to make the jump. Simultaneous motion 
capture and EMG data streams were obtained during the 
performance of this task. Our hypothesis is that with age, the 
time from muscle contraction to movement initiation 
decreases during the performance of a cognitive-motor task.   
  

II. MATERIALS AND METHODS 

A. Subject selection 
Fifty-six healthy participants were recruited for this study. 

The age of the subjects ranged from 18-82 years. Data 
presented here was analyzed from 36 subjects due to 
technical difficulties during the recording sessions (missing 
markers, synchronization difficulties, poor EMG 
signal/noise ratio). The percentage of females in the study 
was 40%. None of the participants had overt neurologic, 
psychiatric or cognitive dysfunction (e.g., stroke, dementia, 
Parkinson’s disease, etc). All measurements were recorded 
in the Motion Capture Lab at the University of Texas at 
Dallas. The study was approved by the Institutional Review 
Board at the University of Texas at Dallas. Subjects signed a 
consent form before the start of each session. 

 

B. Motion capture acquisition and analysis 
 Motions were captured in the Motion Capture Lab 

equipped with 16 cameras (Vicon Systems). Data from all 
cameras were acquired at 90-120 frames per second. The 
details of this procedure are discussed in [7].   

C. EMG acquisition and analysis 
EMG Ag-Cl electrodes were used to record muscle 

activity of limbs. From these signals, we extracted the time 
of onset, peak latency, amplitude and other parameters from 
12 muscles (6 on either side). On the upper extremities, four 
electrodes were placed on biceps, triceps, and forearm flexor 
and extensor muscles. On the lower extremity, two 
electrodes were placed on the tibialis anterior and the 
gastrocnemius muscles respectively. The EMG signal was 
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amplified and band-pass filtered (20-450 Hz) by the wireless 
system (Delsys, Boston). The sampling rate was set to 1000 
Hz.  

D. Integrating motion capture and EMG data streams 
Motion capture and EMG data streams were 

synchronized. MATLAB (Mathworks) served as the main 
controller that sent a trigger to EMG and motion capture 
systems to start simultaneous acquisitions via a ‘trigger 
module’ and communicated with MATLAB via the Data 
Acquisition Toolbox (Mathworks). The processed EMG 
signal was full-wave rectified and down-sampled to 120 Hz 
to make it uniform with the motion capture system which 
captures data at 120 samples per second.  

 

E.  Experimental design 
Subjects were divided into 3 groups: Old (61-90), Young-

Old (31-60) and Young (15-30). Subjects performed a 
cognitive-motor task in which they had to jump on a sensor 
mat as quickly as possible in response to a cue. The image of 
the mat was displayed on a projector screen. Data 
acquisition during each trial began when the subject stepped 
on a sensor mat. When the subject steps on the mat, the cue 
“Ready?” is displayed on the screen. After an interval of 5 
seconds, the word “Jump” appears on the screen. The 
subject is told to jump on the mat as soon as he/she sees the 
word “Jump”. If the subject jumps before the appearance of 
“Jump”, the word "False start” is displayed and the trial is 
repeated. Motion capture and EMG data was obtained 
during each of the 15 trials.   

F. Data analysis 
We performed a One-way Analysis of Variance 

(ANOVA) on each of the parameters across the 3 age 
groups followed by a post-hoc Tukey test. A p-value of < 
0.05 was used as the criterion for statistical significance. 
Next, we performed a PCA analysis on the dataset to 
evaluate the relationship between variables. Since the units 
of these variables were different, we standardized the data 
by dividing each column by its standard deviation. Next, we 
were interested in determining whether the entire set of 
means distinguishes the three age groups. To achieve this, 
we derived a new set of variables called canonical variables 
that are linear combinations of the original variables such 
that group differences are maximized. To achieve maximum 
discrimination, we needed maximum separation between the 
groups and minimum separation within the groups. Using 
multivariate analysis of variance (MANOVA), we 
decompose the ratio of within-groups sum of squares and 
cross-products matrix (H) to the between-groups sum of 
squares and cross-products matrix (E). 

 
 
 

III. RESULTS 
Data reported here was collected from 36 subjects.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. EMG and motion capture data during the jump 
 
EMG and motion capture data from one trial is shown in 

Figure 1. The EMG data (top panel) is from the right tibialis 
anterior muscle and motion capture data is from the toe 
segment. The trial starts when the subject steps on the mat 
(red arrow) followed by the jump (green arrow). The jump 
activity is recognized by a notch in left ankle position along 
Z-Axis. The onset of EMG signal (contraction of tibialis 
anterior in this example) occurs prior to the jump (as the 
subject prepares to jump). Comparatively, not much muscle 
activity is seen simply stepping on the mat. This pattern 
varied with each trial and each subject, as EMG activity is 
stochastic in nature. Data was analyzed for the jump 
movement.  

Fig. 2. Parameters extracted from the jump 
 Figure 2 shows a list of parameters quantified for the  



 
 

 

experiment which was measured from the synchronous time 
series of motion capture and EMG.    

A. ANOVA analysis  
One way analysis of variance was performed across the 3 

age groups for the parameters. The time difference between 
onset of gastrocnemius contraction to the initiation of the toe 
segment movement was significantly different for the old 
(p< 0.05) and young-old (p<0.01) groups (Fig. 3A). The (*) 
denotes significance and error bars represent standard error 
of the mean (SEM) for each group.   
 Fig 3: ANOVA analysis on onset time differences between 
toe segment and two leg muscles. The old age group showed 
a 17% reduction in the onset of EMG contraction compared 
to the young group (272 ± 12 vs. 225 ± 17) which may 
suggest a decrease in preparation time before the onset of 
movement.  When time onset for the tibialis muscle was 
used, the old group was not significantly different from the 
young and young-old group (Fig. 3B: young, p=.1; young-
old, p=.4).  

Figure 3 EMG to motion capture onset differences for A. Gastrocnemius 
and B. Tibialis Anterior muscle 

B. PCA analysis 
To evaluate the relationship between variables and their 

relevance to the participants’ age-group, we did a PCA 
analysis on the dataset for all trials of 36 participants and 
corresponding 5 parameters. The factor scores for each trial 
of all participants grouped by age were projected on the first 
four dimensions (Figures 4 and 5). Together, these four 
dimensions (first four principal components) accounts for 
about 96.2% of the explained variance. In order to facilitate 
the interpretation, we represented the variable loadings on 
each principal component in the form of a vector. The 
direction and length of the vector indicated how each 
variable contributed to the two principal components.  

The first component (Figure 4) explained 37.6% of the  

variance and was correlated with area under curve for both 
muscles gastrocnemius and tibialis anterior.  
 The middle age-group i.e. 31-60 has less contraction in 
both muscles. Most of the young age-group and old age-
group has low and high activity in both muscles 
respectively, but both groups were prone to exceptions. The 
second component explained 22.8% of the variance and did 
not correlate with any variables. Due to this, separation 
between groups in first two-component space was not clear, 
as most groups were intermingled with each other. The third 
component (Figure 5) explained 19.3% of the variance and  

Figure 4. Loading plot diagram with five variables contributing to the 
dimensions 1 & 2 and score plot of 36 participants derived from principal 
component analysis 

Figure 5. Loading plot diagram with five variables contributing to the 
dimensions 3 & 4 and score plot of 36 participants derived from principal 
component analysis. 
 
was highly correlated with onset difference between toe 
segment and gastrocnemius, and it opposes the young group 
with highest onset difference to the old group that has low 
onset difference. The fourth dimension explained 16.5% of 
the total variance and was positively correlated with onset 
difference between toe segment and tibialis anterior, and 



 
 

 

negatively correlated with the slope of the jump. It seems to 
isolate, to certain extent, the young and old groups.   

  After projecting the original dataset vector on the 
eigenvectors of HE-1 we obtained canonical variables that 
represented the maximum separation between groups. Figure 
6 shows the a grouped scatter plot of the first two canonical 
variables that has more separation between groups than a 
grouped scatter plot of any pair of original variables. It 
shows three clusters of points representing each age-group, 
overlapping but with distinct centers. For this multivariate 
analysis of variance, we measure Wilk’s lambda (Λ) as a test 
statistic by taking ratio of the determinants, 

     
EH

E
+

=Λ                              (1) 

For our data-set, we get Λ = 0.47. Using Wilk's Lambda (Λ), 
we also measured the F value by means of a set of equations 
mentioned in Appendix. The corresponding F value was 
11.53, which suggests that the set of means of all groups 
were significantly different from each other. Using the 
simple dendrogram plot (not shown) of the three group 
means in Figure 6, we can show that, with respect to 
extracted variables the young and young-old age groups are 
closer to each other than old age-group. 

Fig. 6. A grouped scatter plot of the first two canonical variables showing 
more separation between three age groups. 

DISCUSSION AND CONCLUSIONS 
 This study supports earlier studies that showed that the 

EMG signal occurs before the onset of movement [8]. Some 
studies have also documented the effects of age on 
anticipatory EMG activity during a variety of motor tasks 
and postural adjustments [9]. Our study shows that 
multidimensional techniques used on synchronized motion 
capture and EMG data reveals the performance differences 
between the three age groups using the extracted parameters. 
While this experiment provides data for a single joint 
segment and muscle, it is likely that more information will 
be generated by integrating data from multiple joints and 
muscles. In future studies, we plan to implement more 

complex cognitive-motor experiments (involving more 
sensors like goniometry, accelerometry, galvanic skin 
response and EKG) to identify the declining physiological 
characteristics in the aging.     

This study is an initial step in a direction to develop an 
integrated environment for the simultaneous measurement of 
motion and physiology expressed in the dynamics of human 
action. This will facilitate the development of a 
mathematical model that integrates these parameters to 
extract feature vectors characterizing both reactive and 
proactive physiological processes. The accumulated data 
will serve as a basis for pursuing the long-term goal of 
developing interactive wireless devices to support a variety 
of cognitive and physical training activities for maintaining 
and improving cognitive and motor function in the elderly.  

APPENDIX 
An estimate an F can be calculated through the following 

equations, 
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