
G-pictures: Elements of a Probabilistic Pictorial Grammar 
 
 
1. Introduction 
 
The operation of a computing machine is related to the generation of language by a formal grammar. 
Language and grammar represent a semiotic system. It was shown that a set recognized by a Turing 
machine is equivalent to a language generated by a particular type of grammar (phrase-structure, or type 
0), i.e., it is recursively enumerable. The formal language approach I am taking here implies semiotic 
awareness. It renders computational processes of computing machines as sign processes, sometimes 
referred to as symbolic computation. The state of a computation is, so to say, frozen (synchronic 
dimension of the sign); and the record of this state is a representation of a picture (sometimes even called 
a picture). Randomness, quite often seen as just a convenient way of generating a well-dispersed set of 
numbers (instead of doing it by hand), is associated with language generation processes in view of a 
desired complexity, i.e., qualities through which sentences (in this particular case, images) are considered 
interesting. From a small set of generating rules, various pseudo-random number sources (actually 
routines) supply strings of sufficient length and complexity, thus modulating the computed form. The 
congruential generator that I chose produces a sequence of residues of the modules equal to the word 
size of the computer. However, since we actually take advantage of finite sequences, the question to be 
posed is: What is the sufficient level of complexity at which people’s aesthetic requirements are met? 
Primitive interpreters tend to be overwhelmed by quantity. Obviously, my question is not how to produce 
better random number generators, but rather how to better model aesthetic requirements within the 
structure of the formal representation. It is along this line that I will first present a probabilistic pictorial 
grammar, then suggest an improved fuzzy model; finally, also only as a suggestion, a possibilistic 
approach, i.e., a computational model with an intrinsic semantic dimension. 
 
 
2. Generative grammars 
 
What is a Chomskyan, or a phrase-structure, grammar? It is an attempt to give a formal description to 
natural languages, assuming that the syntactic aspect of such languages is dominant. As a formal model, 
a Chomskyan grammar is at the same time a language-generating device, the reason for which the label 
"generative grammar" was introduced. The four types of grammars—Chomskyan (hierarchy, phrase-
structure, class 0); context sensitive; context free; right-linear—can generate four classes of languages. 
From among these four classes, one class, known as type 2 grammar, i.e., context-free, will be the one 
that I actually use. It has the advantage of having/being a good approximation to/of the syntax of 
programming languages and is accepted by pushdown automata.  
 
The Chomskyan grammar (CG) typology can be expanded and new grammars can be introduced. These 
preserve some properties as defined by Chomsky, although they depart from CG. Examples already 
acknowledged: 
 
a) Lindenmayer grammars, without terminal symbols 
b) Pictorial grammars, extensions of CG, in which the terminal vocabulary is made up of geometric 

entities and the concatenation is "regulated" by certain operations of a geometric nature-generation of 
muIti/poIydimensionaI structures (Chang, 1971) 

c) Parametric grammars, among others. 
 
2.1. Object of the study 
 
The object of my study is already a classic for computer scientists dealing with the issue of describing and 
generating images: Mondrian's aesthetic system (known under the name Suprematism) as expressed in a 
precise segment of his creative activity through his paintings, and the theory he developed. Mondrian's 
geometric construction in orderly fields—non-monotonous, non-serial—is quite stimulating. It is part of the 
general development through which after all computers were designed and built. General principles of the 
aesthetics he defined are: 
 



a) The visual means of expression should be the plane or rectangular prism of a primary color (red, 
yellow, blue) and non-color (white, black, gray). 

b) Composition itself becomes aesthetic expression. 
c) Color is opposed to non-color (white, black, gray). 
d) An equivalence of the means of expression is necessary. 
 
Of different dimensions and of different colors, the expressive components should have the same value. 
In general, balance is based on a bigger surface of non-color or empty space and a small surface of color 
or matter. 
 
Due to the strong formal nature of Mondrian's work, scholars found in it ready examples for descriptions 
based on information processing. A general aesthetics of his work could also be easily derived and 
defined. Explaining or describing Mondrian does not necessarily explain or even describe art in general. 
But some clues are offered regarding what it takes to describe images and how complex the issue of 
interpretation is, even if we involve in our approach such a powerful information-processing device as the 
computer. 
 
Previous approaches include: 
1. Graph theory 
2. Statistical analysis: Mondrian's Key and Ocean (1915) inspired such analysis for description and 

generation of replicas. Noll's study (1966) revealed that a "new Mondrian" was preferred by 55% of 
the audience. Noll considered the complexity of the proportions of Mondrian's paintings; the 
components and their relations; the probability of color, among other criteria. "They [the audience] 
strongly associated randomness with human creativity and therefore incorrectly identified the 
Mondrian as the computer generated picture."  

3. Web grammars (cf. Pfalz, Rosenfeld) 
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4. Metric-statistical (cf. G. Fischer, University of British Columbia) 
5. Structural-topological (cf. Anthony Hill). 
 
2.2. Pictorial grammars 
 
In my approach, I will make use of a still new class of generative grammars—pictorial grammar—along 
the line defined by Shi-Kuo Chang (1973), complemented at the beginning by a probabilistic component, 
and later by a possibilistic type of description. This approach makes use of the strong formalism 



developed around the paradigm of language and allows for future developments in which symbolic 
computation plays the main role in describing and interpreting complex visual configurations. 
 
 
Let us consider the following grammar: 
 

G = (VN, VT, S, R)  
 

in which 
 
VN  = non-terminal vocabulary (set of non-terminal symbols) 
VT = vocabulary (set of terminal symbols) 
VN ∩ VT = ∅ 
S ∈ VN  initial symbol of the grammar G 
R = (R1,...RN) set of production ("re-writing") rules, of the form α → β, in which Ri, with i = 1 has the form V 
→ RI (X1,...Xni), Xi (VN ∪ VT), V ∈ VN  
 
Each rule Ri is represented by a picture. 
Each picture is subdivided in ni regions. 
Each symbol Xi, (in which i = 1). is attached to a region (X1 = region 1, X2 = region 2, etc.) 
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Another case, with A, B, C, D as terminal symbols 
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can be represented as follows: 
 
S => R2(V, W) => R2(R2 (D, C)W => R2(R2 (D, C), R1 (A,B)) 
 
Evidently:  A, B, C, D, ∈ VT; V, W, ∈ VN 
 
or:  Y : R2(R2 (D, C), R1 (A,B)) 
 
The terminal vocabulary can consist of colors (of the region) or other qualitative characteristics. If we use 
only one terminal symbol, we can get a sectoring of the field: 
 
Y : = R2(*, *), R1(*, *)), in which * ∈ VT, and Y- - is the structure 
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Using other rules, we can decompose the non-terminal symbols/vocabulary in as many regions we want, 
bordering any kind of mathematically describable curve. Example: 
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If G is a pictorial grammar thus defined, let L(G) be a language generated by G. We shall call G-painting 
each element of L(G).  



 
In order to generate G-paintings on computers, let us first define probabilistic pictorial grammars. In a 
probabilistic pictorial grammar, each rule Ri is given together with a stochastic vector whose jth-
component indicates the probability that the rule Rj is applied after Ri. Also provided is a probabilistic 
distribution over the set of rules (cf. Salomaa, 1969). For a pictorial grammar, we should consider an initial 
probabilistic distribution and for each non-terminal symbol of each rule, we will have a stochastic vector. 
 
The language generated by a probabilistic grammar consists of all the phrases P generated by the 
grammar, so that the probability associated to the generation of P is greater than a threshold defined at 
the beginning. If the threshold is greater than 0, L(G) is a finite language. We shall define the threshold = 
0, but shall limit the number of decompositions used for the generation of a G-picture. Hence, the 
generation process (generative process) and the language are finite.  
 
Using a pseudo-random multiplicative-congruent generator to obtain, through simulation, the words of a 
language L(G), we shall implement a G-probabilistically determined pictorial grammar. 
 
Properties: 
1. These grammars are context free (or type 2, in Chomskyan typology); i.e., they are closed under 

union. 
2. They can be ambiguous or not. 
3. Each grammar of type 2 is equivalent to a grammar of the same type in which each rule containing a 

terminal symbol has the form  
 

V → A, V ∈ VN, A ∈ VT 
 
4. Property 1 ensures that we can define unions of such grammars and that we can decompose them 

into simpler grammars. 
5. It can be decided (decidability) whether a given chromatic or achromatic field is a G-picture (i.e., can 

be generated from the grammar G). 
 
3. Possibilities for application 
 
3.1. Analytic approach (to analyze chromatic and nonchromatic fields) 
3.2. Storage in a computer memory of the words accepted (G-pictures) 
 
Ex: The structure Y 
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is defined as 
 

R2(R2 (D,C), R1(A,B)) 
 
or more generally as 
 

R2(R2(*, *), R1(*, *)) 
 



Once stored, such descriptions can be manipulated according to image-processing, image-generation, or 
even image-interpretation needs: 
 
3.3 Optimal cut of metal sheets, patterns 
3.4 Pattern recognition 
3.5 Simulation of works of art (re-writing) 
3.6 Introduction of control words and derivations: We can generate LA(G)-language controlled by the 

words A = the set of control words (restrictive specifications). The words in A can be aesthetically 
relevant or can express some other goals. 

3.7 Calculation of the probability of each G-picture for a given grammar G. 
 
 

Mondrian Proportions: 
 
1:12, 1:1O,  1:7,  1:5, 
 
1:3,  2:5,  1:2,   3:5, 
 
2:3,  4:5,  6:7,   1:1 



 
 
 

1. The rules of sectioning (horizontal/vertical) expressed by these proportions will contribute to the 
definition of the probabilistic pictorial grammar characteristic of Mondrian. 
 
2. Rules of the form 

V → A, V∈ VN, A ∈ VT  
 
in which 

VT = {Red, Blue, Yellow, White, Grey, Black} 
 

(Mondrian used only pure colors and achromatics.) 
 
 



 
 
 
 
Hence:  

G = (VT, VN = {S}, S, R), the rules being 
S → Ri (S, S); i = 1,24 (24 corresponds to the 12 proportions) 
S → A, A ∈ VT 

 
 
In other words, we have 30 rules. 
 
The grammar is attached to an initial probabilistic distribution, i.e., a stochastic vector of 30 elements and 
24 x 2 stochastic vectors, each of 30 elements. 
 
Generating G-paintings on the computer, we can obtain simulated Mondrian images: 
 
Red, Blue, Yellow—specified by λ (wave length)  
White - Grey – Black—three grades of saturation in logarithmic progression 
 
 
 
 
 

 
 
 
The next problem is whether the stochastic pictorial language thus generated is closed under generalized 



sequential machines (GSM), which can be understood as generic compilers. Since it is known that the 
mappings defined by such machines generally preserve the typology of Chomsky's hierarchy of 
languages, it makes sense to assume that successive translations of L by GSM mappings will lead to a 
language of the same type as L. Mondrian’s hope was that his aesthetics prove context independent. At 
least in terms of formal languages, this seems to be the case. 
 
 
4. Future directions 
 
A. Use of fuzzy pictorial grammars 
B. Transition from a probabilistic to a possibilistic level, i.e., semantic implications 
 
4.1  A fuzzy grammar is also defined by a quadruple: 
 

G = (VN, VT, S, R) 
 
in which the definitions of the elements are basically the same as defined in the introduction.  
 
VN is a set of labels of certain fuzzy sets on VT * called fuzzy syntactic categories. The elements of R are 
expressions of the form 

                     S 
α → β,  S ∈ [0,1] 

 
in which 
 
α and β are strings in (VT ∪ VN)* 
S is the degree of membership of β given α 
A fuzzy grammar G generates a fuzzy language L (G): 
A string x of VT* is said to be in L (G) iff x is derivable from S.  
The degree of membership µG(x) of x in L (G) is 
 

µG(x) = supmin (µ(S → α1), (µ(α1 → α2),… (µ(αm → x)) > 0 
 
in which 
 

(αi→-αi+1) is the non-null S i+1  such that 
 
    S I+1 
(αi → αi +1) ∈ R ∀i = 0, m 
if α0 = S and αm +1 = x 

 
 
Two considerations follow: 
 
4.1.1 Using a fuzzy language we can evaluate which picture from the generated series is more 

Mondrian than others (a quality that will be called appropriateness). 
4.1.2 We can apply the Suprematist principles to see whether his followers were faithful or only used 

Mondrian's work as a departure point to develop their own concept (e.g., the Russian 
Suprematists, especially Malevitch, are a case in point). 

 
AlI these, as well as other issues, are still to be approached, but the framework is well defined. 
 
4.2 Visual language 
 
At the Al International Conference in Cambridge, 1977 L.A. Zadeh introduced PRUF—A Language for the 
Representation of Meaning in Natural Languages. This language is intended to serve as a target 



language for the representation of meaning of expressions in a natural language. I would like to extend it 
to visual languages. It is based on the premise that the uncertainty in the interpretation of a proposition in 
a natural language is possibilistic rather than probabilistic in nature. 
 
This implies that a proposition p of the form "X is F", in which X is the name of an object and F is a fuzzy 
subset of an universe of discourse U, in PRUF translates into an expression P which defines a procedure 
whose domain is the set of possibly fuzzy relations in a database. Acting on those relations, P yields a 
possibility distribution which characterizes the information I(p) conveyed by p. 
 
If we take p to be a picture generated by a pictorial grammar and the components (horizontals, verticals, 
colors, proportions, etc.) fuzzily ascertained (as in Mondrian's theoretic concept; for example: balance is 
based on a bigger surface of non-color or empty space and a small surface of color, with a big and a 
small, evidently fuzzy by their nature), it follows that a pictorial proposition induces a possibility distribution 
 

∏p = L 
A certain value (proportion) might possibly be achieved, i.e., the possibility of a certain picture is  
 

Poss {p=L} =∏p (L) = µ L (L) 
 
Such characteristics as near, far, etc. are translated into PRUF as 
 

{color (red, small); 
{ 
{        ∏location = surface1 

NEAR[surface=white] 

 
in which NEAR is a fuzzy relation which associates each pair of surfaces through the degree to which they 
are close to each other. This language evidently has greater expressive power than that of semantic 
networks or of first order predicative calculus. It allows us to deal with the imprecision of the visual 
perception in a systematic manner. The logic underlying PRUF is a fuzzy logic with its base logic 
originating in Lukasiewicz's LAleph1 logic in which the truth-values are points in the unit interval. Thus 
continuity, essential in modeling images, is regained. The use of linguistic quantifiers (many, few, several, 
almost all, etc.) is also important since we describe images in language, after all.  
 
Some years ago (1977), I proved that Peirce's sign definition is a Turing computable function and that 
fuzziness is intrinsic to it. Obviously, my interest goes along this line, i.e., sign processing as a more 
general case of symbol processing. Today I reported on an application that requires formalism considered 
already obsolete. I predict that the computer science community will finally acquire semiotic awareness. 
This will free us to rediscover and improve other procedures that were abandoned because we actually 
did not know what to do with them. 
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