Prof. Dr. Mihai Nadin

Artikel in: Signs and Systems, A semiotic introduction to Systems Design,
Cambridge: University Press, erscheint im Sommer 1997

Signs and Systems

A relatively benign observation: The more powerful the technology gets, the more
obvious it becomes that access to this power is crucial for its deployment. Useful
integration of computation depends more upon the means of human interaction
than upon chip speed, bandwidth, or packet switching. Still, in the race for doub-
ling chip performance, the rate of 18 months (the famous Moore law) seems to
obliterate the adjacent law: No machine knows what it can do!

At this juncture, dropping the word semiotics into the ring should by no means be
construed as a declaration that a magic formula for... has been discovered. There is
no magic, neither in moving data faster and on broader lanes, nor in reassessing
the means we need for assuring meaningful interaction with them. Semiotics,
embraced early on by designers of so-called “user friendly systems,” has a history
of fascination with and distrust of signs that we’d better not ignore. Just as there
was no magic alchemy formula for turning lead into gold, there is no magic semio-
tic formula for turning a piece of silicon into a thinking machine with which we can
carry on dialogue. Disappointed alchemists of the Middle Ages started hating
semiotics with probably the same intensity as disappointed computer scientists will
if we do not set up a meaningful set of expectations. The difference—because ther
is one—is that computer scientists are using semiotics, whether they know it or
not.

The birth of a medium

In the the last 30 years, we have witnessed the birth of a new medium whose
importance equals Gutenberg’s invention of movable type. The new medium is the
computer, and this textbook aims to qualify the reader to work professionally with
this medium.

What is the point of defining computers as media instead of machines? Whereas
machines consume energy and aim at manipulating inanimate nature, most compu-
ter applications consume thoughts and feelings and aim at influencing living
human beings. This is exactly what other media do. Viewing present-day computer
applications as machines misses the main purpose of these systems, and therefore
leads design solutions that are for the most part inappropriate.

A brief historical description of the birth of the computer medium is justified here
by the need to put the semiotic perspective in the broader context of the changes
that made the computer possible. Since a medium is, by definition, a carrier of
signs, the birth of a medium can be described by following the development of its
signs—in our case, computer-based signs. In a language-based model, the compu-
ter processes what Ferdinand de Saussure called signifiers.—that is,
Structures are preserved through computation, and meaning is attached to them.

The defining rule is synchronism. In the logic-based model of signs, what is of
importance is the process of sign replication as the triadic unity between an object,
its representation, and the open, infinite series of its interpretations (Figure 1).

Representamen Ohject
(data digitally processed (the phenomena which data
by a computer) stand for or refers to)
*,
Imterpretant
(a sign relating Ohject and Representamen,
causes an open infinite series of possible
Interpretations)

Fig. 1. Computer-based signs in Peirce’s semiotic framework.

Signs must exist physically (the representamen); they stand for something other
than themselves (their object); and the relation between representamen and object
must be related by laws and conventions and cause reac-tions in the interpreter.
Signs are a necessary, but not sufficient, part of communication. They are used by
people or groups of people for managing and coordinating the affairs of daily life.
Signs are means of social interaction.

In their infancy in the 40s, when technology was mostly geared towards number
crunching, computer-based signs lacked most of the properties mentioned.They
were signs of a very limited representation of the world; and once processed, they
made possible only a limited interpretation.

The object: from machine reference to domain reference

Invention of higher programming languages, beginning with the construction of
assemblers, caused the object of program texts to change from the physical machi-
ne to the domain of application. The object of the assembler code given below is
the machine: registers, numbers, and the code itself (“jmp mloop” means that the
program should return to the line named “mloop”).

The sign process is probably not as expressive as that of natural language (in

mloop:movr 1,1 snc
movr 0,0 skp
addzr 2,0
inc 3,3 szr

jmp mloop

which we could describe the same operation), but very precise.

In opposition to this, the next text, written in object-oriented notation, is in-terpre-
table as a description of the application domain of the program—in our example, a
bank account:

class account
owner: ref(person)
amount: integer;
procedure deposit.
procedure withdraw.

end account

The sign process compresses in this notation a variety of activities that describe a
transation. Whereas older programs referred to storage cells and registers, modern
pro-grams can be read as assertions about wages, addresses, and positions. This
was achieved by creating layers of signs within the systems. The lower levels are
still about the machine, but the higher levels concern the application domain.
Higher levels are translated into lower levels. Here we notice subsequent transati-
ons of signs from the object level to the machine level.

Thus, the layers we can identify from a synchronous perspective have a diachro-
nous explanation. They are like geological sediments, the upper ones being youn-
ger than the lower ones (Figure 2).

abstraction level

etc. :
Pascal
assembler

machine language

time

Fig. 2. the evolution from machine to domain reference.

The interpretant: from focus on data to information

By data is meant a formalized representamen of such nature that it can be commu-
nicated and transformed by means of a digital process. By information is meant the
human interpretation of data, based on a convention. Thus, information in this
sense seems to encompass the object, as well as the interpretant of the sign.

At the beginning of the present computer age, much effort was spent on designing

3

algorithms for producing the representamen, and less energy was devoted to ensu-
ring that users were able to meaningfully interpret the results. Business needs kno-
wledge, but data in itself does not give knowledge. The growing emphasis on
object and interpretant means that the systems are required to “be about” relevant
issues, and that the computer-based signs computer-based signs must elicit rele-
vant responses in their context of use. However, awareness of this issue first emer-
ged in the mid-80s.

Interactive use replaces batch-processing

The advent of interactive systems was caused by the need for updated informati-
on.This represented a step towards semiotic dynamics.

Early batch systems had a clean division between Input, Process, and Output. Input
and Output were seen as passive manipulable objects that were transformed by an
active, immutable program—a machine that consumed and produced data in the
same manner as a factory consumed meat and produced canned beef. Users only
saw the batch f cards with the input and the paper output. But with real-time inter-
active systems, the physical handling of the system became a decisive factor in the
interpretative process. Even the input-output distinction is transcended.

In modern object-oriented programming, the basic division of a system is not bet-
ween passive data opposed to an active algorithm. The basic building blocks are
now objects consisting of coherent data and operations that can be handled by
other objects or by users.

Only when this level is reached does the computer-based sign acquire its special
characteristics that set it apart from all other known kinds of signs—its interactive
features. Hypertext is a good example of this transition. Although prophesied by
Vannevar Bush as early as 1945, hypertext first appeared for the public in the 80s
and as Hypercard, it became a commercial product. Hypertext can be described as
a computer-based ver-ion of paper that can live only in an electronic environment,
adding interac-tion and action to the passive paper. The interactive features of
hypertext, known as navigation, is one of the key issues in hypertext design and
the main reason for bothering with hypertext at all. The marriage between hyper-
text and media led to hypermedia.

Enhancing the expressive power of the medium

In the 70s, the only code available in the computer medium was written language.
However, during the 80s, new codes were systematically added to the semiotic
repertoire of the medium: first graphics became available, progressing from
black/white images via 8-bit pictures with 256 colors to high quality images with
millions of colors. Sound was added and is now available in hi-fi quality compara-
ble to records and CDs. The newest code is the filmic code, which, at least in its
digital form, still needs some years of development in order to be aesthetically
satisfying. The process of enhancing the medium’s expressive power is still in its
infancy.

Invention of data-communication and local net

Like all other signs, computer-based signs need to be physically communicated in

4

order to reach their interpreters. But the digital messages had to stay within their
plastic shells until the beginning of the 80s. Only with the advent of digital tele-
phone networks and local area networks did computer-based signs come of age
and were given the same traveling opportunities as their older relatives. Before
that, computer-based signs were half-caste signs that had to be converted to other
media—e.g., paper or tape—before being able to enter a communicative process.
Packet switching, which is a frequently downplayed semiotic development, is of
extreme importance for this process. The fact that semiotic coherence is preserved
while the representamen is switched through packets is fundamental for the suc-
cess of the endeavor.

In the first half of the 90s, the Internet exploded and its World Wide Web enbodi-
ment introduced multimedia technology into the public networks. Overnight, this
turned the Internet into a full-fledged mass-communicative medium that carries out
many of the functions formerly performed only by television and newspapers.

Information technology becomes a general communication and management tool

This phase is probably one of the most important and difficult phases in the matu-
ration of the computer-based sign,, a phase that began only 10 years ago and has
not yet ended.

Basically, sign systems are socially identified. Computer-based signs first achieved
the status of a true sign system when they became embedded in organizations and
were extensively used for practical daily communication and coordination. Since
communication is an important part of organizations, change of communication
means change of the organization. On the other hand, once in use, computer-based
signs may give rise to new forms of organizations, such as the virtual office. Multi-
user systems connected through networks cause new kinds of semiotic systems to
emerge, a kind of collective memory in an organization, a flow of information that
seems to exist and change independently of the individual user.

The omni-presence of computer based signs.

In the same way as written language, computer-based signs permeate society.
Unlike, for example, films and music, which are used only in the cultural activities
of society, computer-based signs are used everywhere: at work, in the family, for
entertainment, in political discussions. One may even say that they occur in areas
that written language has never reached. Computer-based signs enter as active
components in most artifacts we use in daily life. We are aware of them in cars,
refrigerators, clocks, radios and TV sets; in manufactoring equipment; in ships and
airplanes. In all these artifacts, they are used for controlling physical machines and
providing an interface for their users. Semiotics is the meta-language that enables
the design of highly effective systems of computer-based sign processing.

Nothing is a a sign unless intepreted as a sign

The core of any semiotic theory is the sign. Within the notion of the sign we shall
work with, an epistemology is already embedded: we can know only as much as
the magnifying glass of the notion of sign we use affords. Setting a sign perspec-
tive allows us to distinguish between various epistemological possibilities: knowing

as a process based on language (Saussure’s diadic model of a sign); or as a pro-
cess based on acknowledging structures (the structural approach in its entirety), on
logic (Peirce’s system), or on the dynamics of cognitive systems. There is no univer-
sal key; each context requires a different perspective.

It is obvious that common-sense reasoning embodies language processing. The lin-
guistic sign (as the unity between something signified and a signifier) adequately
supports interaction between us and programs based on this type of reasoning. In
other situations, such visualization, signs appropriate to the task at hand—i.e.
visual representation—will be more adequate.

Multimedia, which unite various data types, is, of course, a computational challen-
ge. But it is even more a semiotic experience of a type different from that embo-
died in the processing of homogeneous single data types. We can use previous
semiotic knowledge for word processing and for desktop publishing. In the case of
multimedia, we can use semiotic knowledge to structure meaningful interactions.
The dynamics of particular sign processes and the dynamics of the composite mul-
timedia hypersign are fundamentally different.

Computation equals sign processes

In the examples that make up the core of this book, it will become obvious that
the semiotic task starts by defining the nature of the sign we focus our attention
on, and thus the nature of the sign processes that need to be defined. In every
computation, we do not dealing with isolated signs in a static situation, but with
signs in a dynamic context. Indeed, as fundamental as the sign is for any semiotic
approach, sign processes are the actual embodiment of the life of such signs

(Figure 3).
| K
.-"f(‘) 4
/ 3
p—] I' R ;"f R
._l' F
)
f’f) f sl
/ Vi / ¢ K,
;] —— .r‘)f ri -".-l LY
R " ' 0o TR
a. b. C.
The object stays the same, The representamen The interpretant
the representamen stays the same stays the same.
is different, the inter- (syntax preservation.)

pretation process is
different (semantic
preservation.)

Sign processes

Computers, as we know them today, are digital machines. They operate upon repre-
sentations of data and of instructions making up what are known as programs.
Semiotically speaking, they operate in a language of only two signs—0 and 1, or
Yes and No—and of operations defined by the Boolean logic embodied in its com-

6

ponents. The major task we face is to map between the infinite universe of our exi-
stence and activity to a world where the only words known are Yes and No, and
where the only logic is that embodied in the rules pertaining to these two values.
This is what makes the task so incredibly exciting and so formidable.

Moving these zeroes and ones faster and faster and subjecting them to more and
more operations embodied in the silicon chip will not make them more meaningful
to us. Interactions that map from our intentions and plans to this austere universe
are what we are looking for. Computers are omnipresent. Intimidating to those who
have not grown up with them, they are nonetheless here to stay. But even those
familiar with their presence still have to tame them. Programers are doing it, some
very successfully, learning how to think in an intermediate language, also known as
a programming language. They are, however, dependent upon the layers between
their competence and that of the designers of chips and other components of com-
puters.

In search of coherence

Computer scientists adopted early on the semiotic distinction between syntax (the
representamen domain), semantics (the domain of the relation between representa-
mina and objects), and pragmatics. Still, the notion that programmers, or system
designers, or programing language authors are involved in semiotics, however
unknowingly (like Monsieur Jourdain, in Moliere’s comedy, who discovered that he
is used prose), begs a short comment. Each particular semiotic contribution is
important for the particular activity. But what qualifies the semiotic approach is
dedication to the whole image, the coherence of the integrated parts. A good inter-
face will never automatically guarantee the success of a program. A good program
with difficult interactions will perform at a percentage of its potential. A coherent
integrated semiotic strategy extends to everything that supports and defines the
activity. In some ways, such a semiotic strategy is the meta-program that unites
program, data flow, 1/0 performance, connectivity, process and human interface, cul-
tural and social acceptance, learning, and—why not?—satisfaction.

Transparency

Every time we interact with programs, we interact with those who wrote them. The
same holds true within the interface of virtual reality, even within the computer
games we play. The degree of transparency of any program is indicative of its
semiotic adequacy. One of our purposes is to clarify what can be done, and how, in
order to achieve a level of transparency that does justice to the program—i.e., uses
its possibilities to the maximum—but also to the user—i.e., integrates the user’s
competence in meaningful interaction.

That much can and should be done in order to achieve some of these goals is rela-
tively accepted inside and outside the computer community. Still, the accent
remains on technological progress independent of the preoccupation with coherent-
ly integrated systems. And so, a very interesting situation is generated: Instead of
improving the means and methods by which we interact with digital machines, we
keep reproducing skewed human-machine communication schemes increasing the
computational overhead. This is how and why operating systems expand beyond
any reasonable limit, and computing resources end up being consumed, not prima-
rily for the function for which systems are built in the first place. In the current war

7

between operating systems and browser providers, the focus is on Mhz, MB, and
Mb.

This book is about how we can usefully/efficiently use computation resources for
functions, not for hiding the inappropriateness of our means of interaction with
them.

Acceptance

When we began work on this book, each of the authors was involved in practical
and theoretical work on the subject. It was encouraging for us to see that the com-
puter science community discovered that semiotics is not some exotic ingredient
for their pirogramming cookbooks. The ACM initiatives on computers and semiotics
and the Dagstuhl seminar, and the series of colloquia on semiotics and parallel
processing added to our sense of being not only useful but also desired. This, of
course, does not yet make everything we do automatically stand up to the exigen-
cies of the tasks we are confronted with. If anything, only a tight cooperation
among semioticians dedicated to the interaction between humans and computers
and computer scientists will eventually bring us closer to achieving our common
goals.

It is sad but true that we burn an immense amount of computing cycles only to
keep primitive models of human-computer interaction in the zone of acceptability. It
is infinitely more saddening that we burn many human cycles of thinking and crea-
tivity in interactions so obscure and so inefficient that at times one wonders
whether the same task cannot be better performed without machines. Our goal is
to provide students dedicated to such problems with a text that will further guide
their research. If this book ends up guiding, as well, professionals working in the
field, we will be more than satisfied.

