

 1

Mihai Nadin

The Timeliness and “Future-ness” of Programs

A computer program (henceforth, program) is a machine. There is no way
around this condition of programs. But until we understand what this
entails, the statement bears as much knowledge as any other truism.
 Why is a program a Machine? And if this is so, what are the
consequences for our understanding of the time dimension (timeliness), in
particular, “future-ness,” of programs? The question has pragmatic
implications: Today we are engulfed in programming more than in any
other form of human activity. Behind almost all activities—production of
goods, machines, processed foods, medicine, art, games and
entertainment—programming is involved in a broad range and variety of
forms. We invent new materials in computational form before we actually
“make” them; we explore new medicines; we design the future
(architecture, urban planning, communication, products) using programs;
we redefine education, politics, art, and the military as we express our
goals through programs. All the invisible computers (embedded in our
world) that make up our universe of existence were programmed and
keep undergoing reprogramming. Therefore, to address time aspects of
programming is to account for the meaning and efficiency of a form of
praxis that defines the human being in humankind’s current new age1.
 But what does it mean to program? Let us take a simple program
procedure: the factorial, which is frequently present somewhere in the
larger scheme of things, though not of particular importance. It is part of
the mathematical description of the world. The factorial of a number n is
denoted by n! and is defined in mathematics as

n! = [(n-1) · (n-2) . . . 3. 2. 1] = n · (n-1)!

 Even those who refuse to look at a formula (“Mathematics is not for
me!”) could, if they spare one second, notice that to calculate the factorial
of n one would calculate the factorial of (n-1) and multiply the result by n,
that is, n! = (n-1)! · n. (Obviously, if n=1, the factorial is 1.) This means
that in order to calculate the factorial, we multiply 1 by 2, the result by 3,
the new result by 4 and so on until we reach n. A counter keeps track of
how the numbers increase from 1 to n.

1 Mihai Nadin, The Civilization of Illiteracy, Dresden University Press, 1998 and the German
translation, Jenseits der Schriftkultur, Dresden University Press, 1999. (See also Endnotes.)

 2

 How does a computer program handle this? We can, as I did above,
define the factorial computationally:

Program lines
(define (factorial) n)
(if (=n1),
 1
 (*n (factorial (-n1)))))

What the program lines mean

which means if n=1,
the value is 1
multiply (*) n by the factorial of (n-1).

 “Where is the machine here?” some will ask (and not only those with no
broad knowledge of computers). As we know from literature or from
using machines, a machine takes something, called Input, does something
with it, and produces the result as Output:

1. The machine “factorial”

 This applies regardless whether the machine crushes stones, makes
salami from raw meat, or keeps a certain rhythm controlled by the weights
turning a wheel (the mechanical clock). Let us consider a rendering (2) of
the machine called the factorial program. (In this case, the input is the
number 6, whose factorial will be calculated).

2. The factorial program (see above) can be viewed as an abstract
machine.

 factor

operation

Input n n! Output

 3

 We notice here parts that decrement (6, 5, 4,...), multiply (*), and test for
equality. We also notice a 2-position switch and a factorial machine (it
takes a number and calculates its factorial). It is obvious that our machine
contains another machine, the one called factorial. This qualifies it as an
infinite machine, in the language of machine theory. Moreover, if we want
to have our program evaluated, we need to submit it to an evaluator or
interpreter. (In simple language, this means to test it in order to find out
what to expect from the program.)

3. The evaluator emulating a factorial machine and producing the value
for 6!

(The two examples are presented here with the kind permission of Harold
Abelson and Gerald Jay Sussman, who, with Julie Sussman, wrote a
fundamental book on computer programs2.)
 The evaluator takes as input a description of a machine (the program)
and emulates its functioning. Accordingly, the evaluator appears as a
universal machine, that is, it “knows” how all programs work. Imagine
such an evaluator as an entity that can look at the plan for your future
house and return something like a validation stamp, or draw attention to
the fact that the bathroom on the second floor has no connection to the
water pipe. Or the same evaluator can check out your Webpage design,
your new recipe for chicken soup, or the plans for a new car, and return a
meaningful interpretation that will guide your actions. No human being
can contain the knowledge, not to mention the broad scope of such
diverse projects, that it takes to validate the “program” we call

2 Abelson, Harold, Gerold Jay Sussman, with Julie Sussman. Structure and Interpretation of
Computer Programs. Cambridge MA: MIT Press, 1996.

(factorial of 6 = 6·5·4·3·2·1 = 720)

 4

architectural plan, Webdesign, chicken soup recipe, or automobile
engineering (to name a few examples). To evaluate an open-ended gamut
of programs is impossible. That program evaluation is possible when we
have a limited domain of knowledge, and indeed necessary in all
computations corresponding to the limited domain defined by the
program, corresponds to the nature of knowledge representation in the
form of programs and to what we expect from a program. To state it
briefly: Gödel’s incompleteness theorem3 guarantees that for a limited
domain the description can be complete and consistent.
 Have you noticed any reference to time up to this point? No. The reason
is simple. Machines are timeless; even the machine we call “evaluator” (or
“interpreter”) is timeless. Unless something breaks down in a machine, it
will endlessly and uniformly perform the function for which it was
conceived. The best machine repeats itself ad infinitum (or at least until its
physical breakdown) without taking note of it. If it has a counter, the
number on the counter shows “How far from infinity” it is. Its reason for
existing is this orderly behavior, its predictability. Its underlying principle
is determinism: the cause-and-effect sequence. There is, however, an
implicit time factor here: the cause precedes the effect. But in fact, this
time factor is also reducible to a machine, more precisely, to one that
measures intervals. That time is more than an interval—just as space is
more than distance—is an idea we will eventually have to entertain as we
progress in our discussion of the timeliness (and future-ness) of programs.
 Once we acknowledge determinism as the underlying principle of the
human-made entities we call machines—in the form of artifacts or as
mental machines—we also acknowledge that the “patron saint” of this
perspective of the world is René Descartes (1596-1650)4. Western
civilization adopted his views, albeit some (Is the human being reducible
to a machine?) slightly modified. (For reasons apparently having to do
with a healthy survival instinct, or with opportunism, Descartes claimed
that only animals, but not human beings, are reducible to machines.)
Consequently, western civilization adopted the rationality of his
fundamental contribution—reductionism—and gave up any claim to a
holistic understanding of the world. According to Descartes and others,
all there is, in its amazing complexity, can be managed by breaking the
whole into its parts and then describing each and every component from
the deterministic viewpoint of the cause-and-effect sequence. Within this

3 Gödel, Kurt. Über formelle unentschiedbare Sätze der Principia Mathematica und
verwandter Systeme I, Monatsh. Math. Phys., 38 (1931), pp. 173-198.
4 Descartes, René. Discourse de la méthode pour bien conduire sa raison et chercher la vérité dans les
sciences. Leiden, 1637.

 5

encompassing view of the unified world, machines are a good description
of the living as embodiment of a functionality achieved from lower-
complexity elements. The Cartesian conceptual revolution extends well
into the computer age, although as we advance in our understanding of
the difference between the living and the physical, we are starting to
question some of its tenets. Moreover, with the computer, the inherited
notion of the machine starts being challenged: no more gears, weights,
and coils, no more an exclusively energy-controlled entity, but rather one
in which information (mainly in the form of data) plays the crucial role.
 Obviously, this is not the place to rewrite the chronicle of determinism
or to start yet another anti-determinism crusade. Neither is it the place for
an account of the many questions it has left unanswered. However,
without understanding the fundamental perspective it establishes, and the
challenges we face in questioning this perspective, moreover in
establishing a new perspective, we could not answer even the most trivial
questions regarding the future of computation. Indeed, in looking at the
time aspects of programming, we are looking (aware of it or not) at the
future of computation. Some see this future already sown into the
programs we write today; others in the new technologies of computation
(computing with light, DNA computing, quantum computation, etc.).
And yet others see this future in a computation understood as a living
entity, or at least as a hybrid entity (involving living components) able to
reach anticipatory performance.
 Early on, some of us realized that the computer, as a machine, is by no
means more interesting than an abacus. We did not doubt that an
automated abacus is faster than any expert in using this relatively old
arithmetic machine. We did not doubt that an automated abacus could
perform many operations per time unit (i.e., that it can be fast), that it
could store data (even in primitive registers) beyond our own memory
performance, that it could become the functional repository of all our
arithmetic needs. In other words, it would “know,” for us, all there is to
know about arithmetic. What really drew my attention to the machine
called computer—the term computer was used in the 19th century to denote
a profession carried out by human beings—was a totally different
question: Does the abacus know arithmetic? (The human being called
computer by his profession knew arithmetic and probably more than
that.) Furthermore: Does the computer know—as much as the human
called computer—what it is processing? If it does, then does this
understanding of what is computed affect the outcome? And again, if it
does know, then how? (The human computers learned it and continued
learning as they were exposed to new data.) Where does the machine’s
knowledge come from? (The program carried out by the professionals
called computers took the form of astronomical tables.) But before ending

 6

this personal aside, I want to add one more piece of information. My
computer—the one I was supposed to study and program—did not exist;
it was on paper5. This sounds absurd today, but that was the reality in a
part of the world—Romania—where the absurd was “invented.” (Just
recall Eugen Ionesco’s theater of the absurd, and Tristan Tzara’s Dada
movement.) And that was my good fortune because, after all,
computation is about programs, not about switches, tubes, electrons,
storage, keyboard, and all that makes up the necessary, but by no means
sufficient, hardware.
 Computation emerges as nothing more than a way of automating
mathematics. Yes, human computers were slow, made errors, got sick, took
time off. An automated procedure was by far more adequate and
economical. Before digital computation, others tried to reach the same
goal by using means corresponding to the pragmatics of their time. John
Napier (1550-1617), the Scottish inventor of logarithms, tried (around
1610) to simplify the task of multiplication. (Napier’s rods or bones, as
they were called, served the purpose.) Blaise Pascal (1623-1662) worked
on adding machines (1641); Gottfried Wilhelm Leibniz (1646-1716), who
I consider “the father of the digital,” introduced binary code; Wilhelm
Schickart (1592-1635) built a machine (described by Kepler) that
performed sophisticated operations; Joseph-Marie Jacquard (1752-1834)
built the loom, able to generate complicated patterns (computer graphics
before the age of computers!). Many have tried to write the history of
these early attempts at automatic calculations. And many made up all
kinds of stories since the subject is conducive to fictional accounts.
Obviously Charles Babbage (1791-1871) figures high in such books (and
stories) through his two machines—the Difference Engine and Analytical
Engine (which apparently were never built)—as well as William Stanley
Jevons (1835-1882), who in 1869 built a machine to solve logic problems6.
Through various stories, we became aware of E.O. Carissan (1880-1925),
lieutenant in the French infantry who made up a mechanical contraption
for factoring integers and testing them for primality. And we know of
Leonardo Torres y Quevedo (1852-1936), who assembled (or is famed for
allegedly having done so) an electromechanical calculating device that
played chess endgames.

5 At the Polytechnic Institute in Bucharest (1955-1960), I programmed on paper and carried
out debugging on paper. It could just as well have been done in my mind.
6 Peirce, in Logical Machines (November 1887, published in The American Journal of Psychology)
described the Jevons machine, as well as Marquand’s machines. He also pointed out that the
study of the transition from such machines to the Jacquard loom would “do very much for
the improvement of logic.” See The Writing of Charles S. Peirce, Peirce Edition Project, Vol. 6,
1982, p. 72.

 7

 This short account (which omits many details) is only indicative of an
understanding of temporality that extends well beyond the current use of
the word “program.” Each of the individuals—scientist or not—
mentioned above programmed, but more in the sense in which the abacus
is programmed, not the digital machine, which is at the heart of
computers today. One can say that the abacus is “hardwired;” in other
words, it is its own program. Dependence on the hardware is implicit in
mechanical and electro-mechanical contraptions. Napier’s rods and
Pascal’s adding routines are timeless. Indeed, today they would allow us to
carry out operations with the same degree of precision as in the days in
which they were conceived. Even in our days, the Jacquard loom serves as
a model of programmed patterns, the only difference being that in a
program we can handle more data and readjust the “digital loom” in
almost no time.
 Since I mentioned Babbage, two things deserve to be highlighted: He
extended the meaning of the word engine, corresponding to the machine of
the Industrial Age, to a processing unit of mathematical entities. As a
cognitive instrument, the metaphor affected the future understanding of
machines meant to process information. Some7 attributed to Charles
Sanders Pierce a computer using the electro-mechanical switches of a
hotel system (pointing to rooms reserved, occupied, vacant). Peirce went
far beyond Babbage, as he wrote upon the latter’s death8:

But the analytical engine is, beyond question, the
most stupendous work of human invention. It is so
complicated that no man’s mind could trace the
manner of its working through drawings and
descriptions, and its author had to invent a new
notation to keep account of it (p. 458).

He also pointed out very precisely that “Every reasoning machine [as
Peirce called them] . . . is destitute of all originality, of all initiative. It
cannot find its own problems; . . .”9

7 Ketner, Kenneth L. The Early History of Computer Design: Charles Sanders Peirce and
Marquand’s Logical Machines, The Princeton University Library Chronicle, Vol. XLV:3, Spring,
1984. And: Gardner, Martin. Logic Machines and Diagrams, 1959.
8 Peirce, Charles Sanders. Logical Machines, The American Journal of Psychology, November
1887, p. 70.
9 Peirce, Charles Sanders. Charles Babbage, Nation 13 (9 November 1871): 207-208,
reproduced in the Peirce Edition Project, Vol. II, 1984, pp. 457-459. (See also Endnotes.)

 8

The automation of calculations for ballistics in Howard Aiken’s (1900-
1973) Mark I (1944) and in the artillery calculations on a general-purpose
electronic machine, on the ENIAC (at the Moore School of the
University of Pennsylvania) are in fact the identifier for computation.
Indeed, automated mathematics is the shorthand for the initial computer.
Behind this not trivial observation we find the origin of almost all the
questions preoccupying us today in respect to computation. This begs
some explanation. Descartes proclaimed the reduction of everything to
the cause-and-effect sequence and the reduction of the living to the
machine as the embodiment of determinism. This reduction resulted in
the description of time as duration, and of the living as functionality
(which the machine expressed). The program of the Descartes type of
machine is given once and for all time. It does not change, as performance
does not change unless the components break down. In the deterministic
machine, the implicit time dimension pertains to its functioning, which is
dictated by the physical characteristics of the components. Such a
machine exists, like everything else in Descartes’ world, in the time
dimension of existence reduced to duration.
 With the advent of the computer, the implicit assertion is reasonable:
For the class of mathematical descriptions of the physics of ballistics,
artillery calculations in particular, we can conceive of a machine that will
automate the calculations. In other words, the determinism of the physics
described in mathematical equations of ballistics is such that we can
automate their processing. One can generalize from such equations to
many other phenomena. Space exploration, as well as the trivial
description of playing soccer, comes easily to mind. One can take the
mathematics of the particular ballistics problem as an attempt at modeling
many phenomena of practical impact. If we know how to handle such
difficult descriptions, we already know how to handle simpler cases,
ranging from simulating a game of billiards, to building games driven by
the same program, and to building a control device to guide a rocket. The
abstraction of mathematical descriptions, to which I shall return, makes
them good candidates for an infinite variety of concrete applications.
 This is no small accomplishment. But it is by far not yet what we
understand when we use the words “computer” and “programs.” We
need to be even more specific. Ballistic equations, as complex as they can
get, are but a small aspect of mathematics. (In the meanwhile, they have
been substantially improved.) For all practical purposes, a dedicated
machine (driving a cannon, for instance) is nothing more than a
description of the task to which it is dedicated. The implicit assumption is
that of Descartes’ machine: it performs within a world that is regular,
repetitive, and predictable. Even the variety of applications it might open
is treated the same way. But once we transcend the specialized machine

 9

and enter the domain of computation as a universal process, we transcend
the boundaries of the reductionist perspective. And we are forced either
to accept the model of a permanency that extends from the physical to
the living and to society, or to acknowledge dynamics and take up the
challenge of understanding knowledge as process. More questions to
come our way and guide our endeavor are:

- Is everything reducible to mathematical description?
- Is everything describable in the language of 0, 1 (precision vs.

expressiveness)?
- Is Boolean logic the expression of all there is to the logical decisions we

make in life (whether it is a matter of deciding what to have for
breakfast or how to understand the genetic code)?

 The computer understood as automated mathematics carries a Cartesian
curse with it: If something is reducible to a mathematical description—or
if our mathematical descriptions are abstract enough—it can be
computed. Many scientists and engineers live by this notion. They
simulate life in computational form and study it as though it were real, as
real as our skin, pain, birth, death—only on a more global scale. Others
draw our attention to a simple realization: Our descriptions, regardless of
the medium in which we produce them, are constructs. Their condition is
not unlike the condition of everything else we construct, subject to
physical limitations, but also nothing more than products of our minds.
Such mind products are focused on understanding the context in which
our individual and collective unfolding as human beings takes place.
 Today we call the mathematical description clause a necessary condition
for something to be expressed through computation as we know and
practice it. We add to it the expectation of a logical description. To be
computational means to be expressed through a computational function.
That this condition is ultimately insufficient is due to the time factor.
Imagine that we have captured whatever is of interest to us (for our work,
enjoyment, inquiries, etc.) in computational form. And imagine that we
have enough computational resources to process our data. Time limits the
endeavor since many computational functions are undecidable or
intractable, which basically means that it will take time beyond what we
dispose of (the lifespan of an individual or a generation) to perform the
computation. Complexity has its price. Descartes was not in a hurry. For
him the clock’s rhythm was fast enough to guide his descriptions of the
living as being no more than a machine that processed sensorial
information. Now that our clocks have become very fast—the beat of the
digital engine at the heart of our desktop machines reached the gigaherz
level—we hope to recover some of the complexity that in more steady

 10

times was done away with. Still, the most intriguing questions we would
like to address remain outside the domain in which automated
mathematics and automated logic (sometimes called reasoning) supports
many of our current theoretical and practical endeavors.
 This brings up the more probing question of the language describing
our inquiry. If we want to acknowledge time, we have to deal with
process. The word describes a dynamic entity (something taking place
over time). And as it takes place, it affects something else. In the
mechanical age, to process meant to affect the physical and chemical
appearance of substances we wanted to change, preserve, combine, or
extract. Today the verb to process applies to an abstract entity called
information. Indeed, computers can be understood only in association
with the object of their functioning, only as processing data (the concrete
form of information). To ignore that our notion of information stems
from thermodynamics means to move blindly through a world that is
constructed on the very premise of our acceptance of the laws of
thermodynamics.
 A closer look at how information is defined might tell us more about
the time dimensions of programs than programs themselves. Shannon’s
genius (and direction) is probably comparable to that of Descartes. He
considered information strictly from the engineer’s perspective: Give me
an input that my machine can expect, and I will make sure that the
processing of this input will not alter it beyond recognition. His focus is
on communication; and accordingly, he does not concern himself with
anything but the physical properties of the carrier. Meaning is ignored,
which means that, specifically, the semantic dimension is of no concern.
What I describe here is well known; I myself have addressed this issue of
the exclusive use of syntax more than once10. But there is one more thing
to be added here: Syntax—as we know it from semiotics (to which I shall
return) is timeless. It captures only the description of the carrier, not the
meaning of the message, and even less the pragmatic dimension. Working
for the Bell Telephone Company, Shannon was concerned with the price
of sending messages through a telephone line. He noticed that a great deal
of what makes up a message is repetition (what we call redundancy, i.e.,
that part of what we exchange in communication that carries nothing new
with it). Actually, for Shannon, information was the inverse of
redundancy,. If prior to reading these lines your knowledge of Shannon’s
theory was that a) “He was the founder of information theory;” and if
after reading these lines you double your knowledge to b) “Information

10 Nadin, Mihai. Consistency, completeness, and the meaning of sign theories: The semiotic
field, The American Journal of Semiotics, 1:3, 1982, pp. 79-88.

 11

theory is reductionist theory,” then I contributed a bit (pun intended) to
your knowledge.
 Recently, the American public were glued to their televsion sets
watching the outcome of a celebrity trial (Martha Stewart, a household
name in the USA, was on trial before a jury). It was a typical Shannon
experiment. There were four counts on which the jury had to render a
verdict of guilty or not guilty. Outside the courthouse, thousands waited
to hear the outcome. TV cameras from around the world focused on the
exit from the Manhattan courthouse. And as the foreperson was reading
the jury’s verdict, strange messengers started a bizarre show: They ran
ahead waving above their heads colored scarves—red for guilty on count
1, blue for guilty on count 2, etc. The TV viewers had no access to details
of the color code prepared in advance by journalists hurrying to be the
first to make the verdict known. Prior uncertainty—guilty or not on count
1, etc.—was halved each time a runner with a colored scarf ran down the
stairs. Ultimately, if the jurors themselves had been on the stairs and used
all the sentences read inside the courtroom, the information would have
been the same. The text they would have read would be informationally
equivalent to the color of the flag. One bit is defined as the information
needed to reduce the receiver’s uncertainty by half, no matter how high
that prior uncertainty was. It is a logarithmic measure, and the formula
behind the whole thing is

This says that information, defined on the premise of the reductionist
machine model, is commodity, quantifiable like energy consumption, or
like currency flows. In this respect, every program that is based on the
assumption that entropy (a concept originating in thermodynamics and
describing the disorder of a system) is a good model for information
dynamics remains fundamentally in the realm of physical entities and their
respective deteministic laws. This is the model of the carrier (the sign)
reduced to its appearance (the syntax).
 In the realm of the living, which always includes the physical but is not
reducible to it, entropy only partially qualifies the dynamics of the whole.
Accordingly, for all programs pertaining to artificial machines, Shannon’s
information theory is an appropriate foundation. But once we enter into
living computations, or into the promising hybrid computation (living and
artificial in some functional connection), the notion of information itself
is no longer adequate. With the living, time, in its richness—that is, no
longer only duration and no longer a one-directional vector—has to be
acknowledged and indeed accounted for in the programming.

 n
H = − ∑ Pi log

2
 Pi (bits per symbol)

 i=1

 12

 In recent years, the Boltzmann equation

S = klogW

—in which S stands for entropy, k is a constant (the Boltzmann constant),
and the logarithm of the states of a system W (“elementary
complexions”)—which stands behind Shannon’s work, underwent
scrutiny. Constantin Tsallis11 belongs to those who noticed that under
certain circumstances, some systems will actually undergo a reduction in
their entropy. This new theory of disorder takes into consideration the
dynamics of self-organization. Moreover, Leo Szilard12, in describing
biological processes, took note of the decrease in entropy in living
systems. With all this in our minds, it is important that we realize that
sooner or later information theory itself will have to be redefined in order
for us to account for the fundamentally different dynamics of life.
 My own position is that anticipation is what distinguishes the living
from the non-living, and that anticipatory computation can be achieved
only by effectively redefining information as to include not just the
semantic dimension, but foremostly to make the pragmatics possible.
From reaction-based computation expressed in programs that are
machines, to anticipatory computation, we will have to redefine many of
our fundamental premises. Together with the bit, an antebit will describe
the process. The bit will effectively describe the probabilistic domain (and
all the post-fact statistical information), while the antebit will describe the
possibilistic domain (and all the pre-factual opportunities). This brings us
back to the implementation of information processing in what we call
computers (information processing machines, in particular, programs).
 Mathematics allows us, among other things, to describe what we call
reality. It is not the only means of description. So-called natural language
can be used for the same purpose. Images, in one form or another, are
also descriptions. So are sounds. Some domain-specific means of
description constitute the “language” of those domains: the formalisms of
chemistry (chemical formulas are a well-defined means of description), of
genetics, or of logic (focused on thinking). That such means of
description of what there is can, at the same time, be a means of

11 Tsallis, Constantine, V. Latore, M. Barager, A. Rapisarda. Generalization to non-extensive
systems of the rate of entropy increase: the case of the logistic map, Physics Letters A 273,
2000.
12 Szilard, Leo. Über die Entropieverminderung in einem thermodynamischen System bei
Eingriffen intelligenter Wesen, Z. Phys. 53, pp. 840-856. (See also: On the decrease of
entropy in a thermodynamic system by the intervention of intelligent beings, Behavioral
Science, 9, pp. 301-310.)

 13

synthesizing something that is only in our minds will not preoccupy us
here. But we should never ignore the complementary nature of the
analytical (description) and the synthetical (design). Programs are a true
exemplification of this condition.
 Mathematical description expresses what is called declarative knowledge.
One can generalize to the declarative knowledge expressed in logic,
chemistry, genetics, etc. It concerns what is, as captured from a certain
perspective. For instance, the ballistic equations whose solution prompted
automation in a computer program describe the physics upon which
artillery is based. That there is more to a cannon than only trajectory is
well known, even by those who have never operated a cannon. But for all
practical purposes, the program to guide artillery actually describes the
physics of throwing a ball from A to B. This program is no longer an
expression of declarative knowledge, but of imperative knowledge: how to
hit a target (which might even move from B to C as we try to target it
from A).
 In relation to mathematics, computer science, which has programs as a
goal (among others, of course), belongs, not unlike machine engineering,
to the domain of imperative knowledge. It consists of procedures that are
descriptions of how to perform activities. And as any other procedure—
let’s say hammering a nail into a wall—it is based on recursion: it has its
own actions as a reference, it is self-referential. There is an implicit
circularity here: all of it is repetitive (defined in terms of what is repeated,
i.e., in terms of itself). Simply stated, what governs the whole endeavor is
a strategy of decomposition: divide the action into parts. If each part has a
well-defined identifiable task, this task can become a module for other
procedures. The abstraction process guarantees efficiency: One does not
have to reinvent the hammering of the nail each time this action becomes
necessary. By the same token, recursivity speaks of the successful
reduction of the task into independent procedures. This is why computers
are made of machines that contain machines that contain machines, etc.
Every detail is suppressed in the process. The meaning of such modules
ought to be independent of parameters not essential to the task.
(Remember the program called factorial? The factorial procedure is
independent of the size of the number n. Think about a procedure
returning the volume of a complex object. The parameters of the object,
or the nature of its surface, or the density of the material should not affect
the calculation).
 Let’s be clear about the following: Declarative and imperative
knowledge can be conceived only as interrelated. We can easily realize
how declarative knowledge (take a mathematical equation describing the
reflection of a ray of light on a mirror) is “translated” into imperative
knowledge (the computer program that shows the reflection). It is by far

 14

more complicated to use imperative knowledge (a description of a scene)
in order to infer from it declarative knowledge (a deduction: “There must
be something blocking the reflection”); but it is an operation that is
relatively often performed (for instance, in interpreting images captured
by digital cameras).
 There is only one reason to insist on these aspects: to make it clear that
the more abstract the procedure, the more effective it is (provided that it
is an adequate procedure). Abstraction ultimately means the squeezing out
of time. We can build programs from modules only if they are time
independent. Compound procedures have no internal time; their reference
to duration is a reference to their internal dynamics, not to that of the
world. The space and time effectiveness of programs within the
reductionist view of computation concerns the space (storage) and time
(synchronization mechanisms) implicit in the processing, not in the
entities described. However, with computation, machines open up to time
through the dimension of interactivity. While every other known machine
is timeless, computers open up the possibility of being driven by data
from the order of events (as in playing a game), better yet, of reflecting
the order of events, or of introducing (in robotics, for example) an order
of events that allows for the performance of a specific task, or of
achieving a complex behavior. This new dimension renders the
deterministic mold relative.
 In order to achieve interactivity, programs rely on mathematical and
logical descriptions that reflect the dynamics of the expected activity. If
you want a real-time facility for correcting spelling in a word processing
program, you have to provide a dynamic view of the activity called writing.
Obviously, the more complex the activity—let’s say target recognition at
microscopic levels (after labeling an ingredient of a medication, following
its “moving” through the tissue subject to treatment, and even “guiding”
it so that it reach a desired region), or at the interplanetary scale (the
landing on Mars resulted in many examples)—the more elaborate the
description and implementation in programs. At this level we no longer
distinguish durations (the determinsitic reduction of time), but time
variability: slower than real time, real time, faster than real time. We also
identify the depth of time, as in synchronicity; or as in parallel streams of
time (while process 1 unfolds, process 2, related or unrelated, unfolds
within the same time scale or not, etc. etc.); or as in different directions
(the time vector is bi-directional and probably even multi-directional).
 Within this view, the machine model has to be revisited in the sense that
the clear-cut distinctions characteristic of the black box (Input, Output,
States) be redefined. In particular, the local state variable describing the
actual state of the computational object has to be defined in such a way
that it allows for change. Computational objects with state variables that

 15

change correspond not only to trivial tasks subject to automation (such as
bank account management), but also to very complex tasks (such as
cooperative design over networks). Functional programming is not
adequate is such cases. Imperative programming, which introduces new
methods for describing and managing abstract modular program entities,
is but one of the many methods developed for this purpose. Obviously,
the description of the living that we call genetics is better adapted to the
task of supporting interactivity. This explains why new forms of
computation, which are based on the abstractions of particular fields of
knowledge (e.g., genetics, quantum mechanics, DNA analysis), emerge as
we try to capture time-based phenomena. From the viewpoint of time
processes, a stone is in a different situation from a living entity. With the
advent of anticipatory computing13, this becomes more and more evident.
 Max Bense, the mercurial prophet of rationalist aesthetics in a country
perverted by speculation, correctly noticed that “Nicht die mathematische
Beschreibung der Welt ist das Entscheidende, sondern die aus ihr
gewonnene prinzipielle Konstruierbarkeit der Welt”14. (It is not the
mathematical description of the world that is decisive, but the principle of
the constructability of the world that is gained from it, [translation ours].)
Unfortunately, as was the pattern of his activity (and private life), he did
not stop in due time. He went on to speak of “die planmäßige
Antizipation…einer zukünftigen künstliche Realität,” (anticipation
according to plan…of a future artificial reality [translation ours]); and
finally, to ascertain: “Nur antizipierbare Welten sind programierbar, nur
programierbare sind konstruierbar und human bewohnbar.” (Only worlds
that can be anticipated are programmable, only programmable [worlds]
are capable of being constructed and inhabited by human beings,
[translation ours].) None of his illustrious students (whom he managed to
antagonize through acts bordering on the irrational) noticed how
deterministic thought in the end led their master to an upside-down image
of the role of computation. But at least Bense had the stature of an agent
provocateur. In comparison, the new theoreticians of “aesthetic
computation” are at best pygmies too self-important to read what others
wrote long before they did.
 Concurrent processes, i.e., taking place in parallel, although not
necessarily along the same time metric, are only an image of the
complexity of the time identity of interactive programs. The timeliness of
programs that by now have adaptive qualities and display evolutionary

13 Nadin, Mihai. Anticipation—A Spooky Computation, CASYS, International Journal of
Computing Anticipatory Systems (D. Dubois, Ed.). Liege: CHAOS, Vol. 6, 1999, pp. 3-47.
14 Bense, Max. Einführung in die informations theoretische Ästhetik (Introduction to Information
Theory Aesthetics). Reinbeck, 1969.

 16

characteristics is quite different from that of “canned” programs. Their
future is different from what industry understands today when they
produce the next version of a program or an operating system. In fact, in
addressing the issue of timeliness and future-ness of programs, we soon
come to the conclusion that technology, as the embodiment of the
successful use of programs, can limit performance but should not, as still
happens, drive content. As interactivity becomes the driving force, we
should be able to move beyond task-based computation to a pragmatic
foundation. In other words, instead of the routine of launching “canned”
programs of timeliness applications (word processing, paint program,
browser, etc.) under the guidance of operating systems, we should be able
to execute pragmatic functions—I want to represent my data for
colleagues all over the world—that would interactively select the
appropriate applications and use them as we, users in a deterministic role,
do today. This role change will render the overhead of training operators
obsolete, and our question regarding program timeliness will take on new
meaning: Is the co-evolution of the living and the programs it conceives
possible?
 Deep down, in the digital engine, there are two elements controlling and
making computation possible: an “alphabet” and a “grammar.” These two
together make up a language—machine language. The alphabet consists
of two letters (0 and 1); the grammar is the Boolean logic (slightly
modified since Boole, but in essence a body of rules that make sense in
the binary language of Yes and No in which our programs are written).
The assembler—with a minium of “words” and rules for making
meaningful “statements”—come on top of this machine language; and
after that, the level of “formal language” performance in which programs
are written or automatically generated. Such programs need to be
evaluated, interpreted, and executed. Here I submit to the reader
structural details we all know (some in more detail than others) but which
only rarely preoccupy us. My purpose is very simple: to lend meaning to
my point that computers are semiotic machines (which I first articulated
over 20 years ago15). Too many scholars took over my formulation (with
or without quotation marks or attribution) without understanding that as a
statement, it is almost trivial. What my colleagues—some of them
respectable authors and active in semiotic organizations claiming
legitimacy—totally missed is the need to realize that such a description
makes sense only if it advances our understanding of what we describe.

15 As both computer scientist and semiotician, Mihai Nadin went on record that computers
are semiotic machines as early as 1976 (see Nadin, Mihai. The repertory of signs, Semiosis,
Heft 1, 1976, pp. 29-35; Sign and fuzzy automata, Cahiers de Linguistique Théorique et Appliquée,
XIV, 1, 1977).

 17

To say that the computer is a semiotic machine means to realize that what
counts in the functioning of such machines are not electrons (and the in
the future, light or quanta) but information expressed in semiotic forms,
in programs, in particular. We take representations (which reflect the
relation between what a sign represents and the way we represent it) and
process them. This is the Shannon-based model. (Or should I say the Bell
Telephone model?) Moreover, as we use computation, we try to assign a
meaning to our representation. Since in the machine itself, or in the
program that is a machine, there is no place for a semantic dimension, we
build ontologies (which are databases not dissimilar to encyclopedias or
dictionaries) and effect association. This is how search engines frequently
work; this is what stands behind the new verb “to google” and our actions
when we start research by identifying sources of knowledge in the world-
wide Web.
 But even our ontologies, hand-made or automatically generated, stand
on the “shoulders” of the language of zeros and ones (of Yes and No) and
of the Boolean algebra that is the grammar of this primitive language. Any
semiotician worth his salt should by now know that the means of
representation actively influence and affect the representation. They are
not neutral, but constitutive of interpretant processes that make up our
way of thinking, that influence our actions. To say that computers are
semiotic machines means to realize that the interpretant, i.e., infinite
semiosis (the sign processes through which we become part of the signs
we interpret) causes us to act differently, to think differently, to express
ourselves differently from the way we did when language (and literacy)
were the dominant means of expression, communication, and
signification.
 The extreme precision brought about by an alphabet of two letters and a
grammar of clear-cut logic comes at the expense of expressiveness. The
more precise we are, the less expressive the result. In terms of program
timeliness—future-ness, in particular—this means that we could capture
time and make it a part of programs only—but only when computation
will transcend, as it partially does, not just its syntactic dimension, but also
the semantic dimension of the signs making up programming languages.
Indeed, at the moment when computation will be pragmatically driven by
what we do, it will acquire a time dimension coherent with our own
time—and will reflect the variability of time. We are what we do, and
accordingly, if we could integrate programs in what we conceive, plan,
execute, and evaluate, and thus in our own self-constitution, we would
establish ourselves not just as users, but also as part of the program. For
this to happen, many conceptual barriers need to be overcome. We would
have to address the need to redefine information, to redefine the alphabet
and the logic, to rediscover quality as the necessary complement of

 18

quantity, and to understand the digital and analog together. Within my
program, which is a bit more radical, this means to practice not only the
deterministic reaction mode of the physical, but also the anticipatory
characteristic of the living.

Endnotes

Footnote 1. The Civilization of Illiteracy focuses on what makes the
humankind’s successive ages (referred to as pragmatic framework)
possible and necessary. The German translation is an abridged version of
the English

Footnote 9. In the same article, Peirce gave some details regarding
Babbage:

About 1822, he made his first model of a calculating
machine. It was a “difference engine,” that is, the first few
numbers of a table being supplied to it, it would go on and
calculate the others successively according to the same law (p.
457).

He discovered the possibility of a new analytical engine to
which the sufference engine was nothing; for it would do all
the arithmetical work that that would do, but infinitely more; it
would perform the most complicated algebraical processes,
elimination, extraction of roots, integration, and it would find
out for itself what operations it was necessary to perform; . . .
(p. 458)

Footnote 15. As both computer scientist and semiotician, Mihai Nadin
went on record that computers are semiotic machines as early as 1976 (see
Nadin, Mihai. To ward off any claims to the opposite, the pertinent
articles are listed as follows: The repertory of signs, Semiosis, Heft 1, 1976,
pp. 29-35; Sign and fuzzy automata, Cahiers de Linguistique Théorique et
Appliquée, XIV, 1, 1977). In the USA, Nadin announced that “the
computer is the semiotic machine par excellence” (cf. Visual semiotics:
methodological framework for computer graphics and computer-aided design. Lecture
presented at the conference, The Designer and the Technology Revolution at the
Rochester Institute of Technology, Rochester, New York, May 13-15,
1982). He was the first to offer classes at the Rhode Island School of
Design, Brown University (both in Providence, RI), the Rochester
Institute of Technology, and the Ohio State University. He did semiotic
consulting for Apple’s Lisa computer (user interface evaluation) in 1981-
82. Further documentation can be found in: Interface design and

 19

evaluation, Advances in Human-Computer Interaction, vol. 2 (R. Hartson, D.
Hix, Eds.). Norwood NJ: Ablex Publishing Corp., 1988; The bearable
unbearability of the rational MIND, Ästhetik, Semiotik, Informatik (F. Nake,
Ed.). Baden-Baden: Agis Verlag, 1993, pp. 63-102.
 Until about 1995, the semiotic establishments at the leading centers in
the USA, North and South America, and Europe, were still emphasizing
semiology (as opposed to Peircean semiotics). They had not even come so
far as to consider the visual as a domain worthy of semiotic research.
Once so-called semioticians decided to consider the computer, they did so
without checking whether anyone had written anything before they had
their “revelation.” (Sadly, this is the case with many fields of academic
endeavor, such as the aesthetics of computer science.) And, as has been
the case with most endeavors in semiotics, the scholars/scientists either
misunderstand the subject or, blinded by their brilliant discovery, lose all
sense of academic rigor and lead others into the pit.
 Some examples of people who took over the term “semiotic machine”
without giving due and proper credit are: Pedro Barbosa, with José
Manuel Torres (O computador como máquina semiótica, no date); Dr.
Gerd Döben-Henisch (Semiotic Machines. Theory, Implementation,
Semiotic Relevance, Aug. 6, 1996, 8th International Semiotic Congress of
the German and the Netherlands Semiotic Societies); Karin Wenz
(Representation and self-reference: Peirce’s sign and its application to the
computer, Semiotica 143–1/4, 2003, 199–209). Among the conferences and
congresses held on the subject, and where, again, Nadin’s fundamental
work was totally ignored, are: 10th International Congress of the German
Association for Semiotic Studies (DGS), University of Kassel (Germany),
July, 19-21, 2002; Section “Semiotics and the Computer” (under the
auspices of Winfried Nöth, Kassel University, Department of English and
Romance Language Studies [of all things!]).

