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Mihai Nadin 
 
The Timeliness and “Future-ness” of Programs 
 
A computer program (henceforth, program) is a machine. There is no way 
around this condition of programs. But until we understand what this 
entails, the statement bears as much knowledge as any other truism.  
 Why is a program a Machine? And if this is so, what are the 
consequences for our understanding of the time dimension (timeliness), in 
particular, “future-ness,” of programs? The question has pragmatic 
implications: Today we are engulfed in programming more than in any 
other form of human activity. Behind almost all activities—production of 
goods, machines, processed foods, medicine, art, games and 
entertainment—programming is involved in a broad range and variety of 
forms. We invent new materials in computational form before we actually 
“make” them; we explore new medicines; we design the future 
(architecture, urban planning, communication, products) using programs; 
we redefine education, politics, art, and the military as we express our 
goals through programs. All the invisible computers (embedded in our 
world) that make up our universe of existence were programmed and 
keep undergoing reprogramming. Therefore, to address time aspects of 
programming is to account for the meaning and efficiency of a form of 
praxis that defines the human being in humankind’s current new age1.  
 But what does it mean to program? Let us take a simple program 
procedure: the factorial, which is frequently present somewhere in the 
larger scheme of things, though not of particular importance. It is part of 
the mathematical description of the world. The factorial of a number n is 
denoted by n! and is defined in mathematics as 
 

n! = [(n-1) · (n-2) . . .  3. 2. 1] = n · (n-1)! 
 
 Even those who refuse to look at a formula (“Mathematics is not for 
me!”) could, if they spare one second, notice that to calculate the factorial 
of n one would calculate the factorial of (n-1) and multiply the result by n, 
that is, n! = (n-1)! · n. (Obviously, if n=1, the factorial is 1.) This means 
that in order to calculate the factorial, we multiply 1 by 2, the result by 3, 
the new result by 4 and so on until we reach n. A counter keeps track of 
how the numbers increase from 1 to n.  

                                                 
1 Mihai Nadin, The Civilization of Illiteracy, Dresden University Press, 1998 and the German 
translation, Jenseits der Schriftkultur, Dresden University Press, 1999. (See  also Endnotes.) 
 



 

 2

 How does a computer program handle this? We can, as I did above, 
define the factorial computationally: 
 
Program lines 
(define (factorial) n) 
(if (=n1),    
 1 
 (*n (factorial (-n1))))) 
 

What the program lines mean 
 
which means if n=1, 
the value is 1 
multiply (*) n by the factorial of (n-1). 

 
 “Where is the machine here?” some will ask (and not only those with no 
broad knowledge of computers). As we know from literature or from 
using machines, a machine takes something, called Input, does something 
with it, and produces the result as Output: 
 

 
 

                                               
 

 
1. The machine “factorial” 
 
 This applies regardless whether the machine crushes stones, makes 
salami from raw meat, or keeps a certain rhythm controlled by the weights 
turning a wheel (the mechanical clock). Let us consider a rendering (2) of 
the machine called the factorial program. (In this case, the input is the 
number 6, whose factorial will be calculated). 

 

 
 
2. The factorial program (see above) can be viewed as an abstract 
machine. 
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 We notice here parts that decrement (6, 5, 4,...), multiply (*), and test for 
equality. We also notice a 2-position switch and a factorial machine (it 
takes a number and calculates its factorial). It is obvious that our machine 
contains another machine, the one called factorial. This qualifies it as an 
infinite machine, in the language of machine theory. Moreover, if we want 
to have our program evaluated, we need to submit it to an evaluator or 
interpreter. (In simple language, this means to test it in order to find out 
what to expect from the program.) 
 
 

 
 
3. The evaluator emulating a factorial machine and producing the value 
for 6! 
 
(The two examples are presented here with the kind permission of Harold 
Abelson and Gerald Jay Sussman, who, with Julie Sussman, wrote a 
fundamental book on computer programs2.) 
 The evaluator takes as input a description of a machine (the program) 
and emulates its functioning. Accordingly, the evaluator appears as a 
universal machine, that is, it “knows” how all programs work. Imagine 
such an evaluator as an entity that can look at the plan for your future 
house and return something like a validation stamp, or draw attention to 
the fact that the bathroom on the second floor has no connection to the 
water pipe. Or the same evaluator can check out your Webpage design, 
your new recipe for chicken soup, or the plans for a new car, and return a 
meaningful interpretation that will guide your actions. No human being 
can contain the knowledge, not to mention the broad scope of such 
diverse projects, that it takes to validate the “program” we call 
                                                 
2 Abelson, Harold, Gerold Jay Sussman, with Julie Sussman. Structure and Interpretation of 
Computer Programs. Cambridge MA: MIT Press, 1996. 

(factorial of 6 = 6·5·4·3·2·1 = 720) 
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architectural plan, Webdesign, chicken soup recipe, or automobile 
engineering (to name a few examples). To evaluate an open-ended gamut 
of programs is impossible. That program evaluation is possible when we 
have a limited domain of knowledge, and indeed necessary in all 
computations corresponding to the limited domain defined by the 
program, corresponds to the nature of knowledge representation in the 
form of programs and to what we expect from a program. To state it 
briefly: Gödel’s incompleteness theorem3 guarantees that for a limited 
domain the description can be complete and consistent. 
 Have you noticed any reference to time up to this point? No. The reason 
is simple. Machines are timeless; even the machine we call “evaluator” (or 
“interpreter”) is timeless. Unless something breaks down in a machine, it 
will endlessly and uniformly perform the function for which it was 
conceived. The best machine repeats itself ad infinitum (or at least until its 
physical breakdown) without taking note of it. If it has a counter, the 
number on the counter shows “How far from infinity” it is. Its reason for 
existing is this orderly behavior, its predictability. Its underlying principle 
is determinism: the cause-and-effect sequence. There is, however, an 
implicit time factor here: the cause precedes the effect. But in fact, this 
time factor is also reducible to a machine, more precisely, to one that 
measures intervals. That time is more than an interval—just as space is 
more than distance—is an idea we will eventually have to entertain as we 
progress in our discussion of the timeliness (and future-ness) of programs. 
 Once we acknowledge determinism as the underlying principle of the 
human-made entities we call machines—in the form of artifacts or as 
mental machines—we also acknowledge that the “patron saint” of this 
perspective of the world is René Descartes (1596-1650)4. Western 
civilization adopted his views, albeit some (Is the human being reducible 
to a machine?) slightly modified. (For reasons apparently having to do 
with a healthy survival instinct, or with opportunism, Descartes claimed 
that only animals, but not human beings, are reducible to machines.) 
Consequently, western civilization adopted the rationality of his 
fundamental contribution—reductionism—and gave up any claim to a 
holistic understanding of the world. According to Descartes and others, 
all there is, in its amazing complexity, can be managed by breaking the 
whole into its parts and then describing each and every component from 
the deterministic viewpoint of the cause-and-effect sequence. Within this 

                                                 
3 Gödel, Kurt. Über formelle unentschiedbare Sätze der Principia Mathematica und 
verwandter Systeme I, Monatsh. Math. Phys., 38 (1931), pp. 173-198. 
4 Descartes, René. Discourse de la méthode pour bien conduire sa raison et chercher la vérité dans les 
sciences. Leiden, 1637. 
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encompassing view of the unified world, machines are a good description 
of the living as embodiment of a functionality achieved from lower-
complexity elements. The Cartesian conceptual revolution extends well 
into the computer age, although as we advance in our understanding of 
the difference between the living and the physical, we are starting to 
question some of its tenets. Moreover, with the computer, the inherited 
notion of the machine starts being challenged: no more gears, weights, 
and coils, no more an exclusively energy-controlled entity, but rather one 
in which information (mainly in the form of data) plays the crucial role. 
 Obviously, this is not the place to rewrite the chronicle of determinism 
or to start yet another anti-determinism crusade. Neither is it the place for 
an account of the many questions it has left unanswered. However, 
without understanding the fundamental perspective it establishes, and the 
challenges we face in questioning this perspective, moreover in 
establishing a new perspective, we could not answer even the most trivial 
questions regarding the future of computation. Indeed, in looking at the 
time aspects of programming, we are looking (aware of it or not) at the 
future of computation. Some see this future already sown into the 
programs we write today; others in the new technologies of computation 
(computing with light, DNA computing, quantum computation, etc.). 
And yet others see this future in a computation understood as a living 
entity, or at least as a hybrid entity (involving living components) able to 
reach anticipatory performance. 
 Early on, some of us realized that the computer, as a machine, is by no 
means more interesting than an abacus. We did not doubt that an 
automated abacus is faster than any expert in using this relatively old 
arithmetic machine. We did not doubt that an automated abacus could 
perform many operations per time unit (i.e., that it can be fast), that it 
could store data (even in primitive registers) beyond our own memory 
performance, that it could become the functional repository of all our 
arithmetic needs. In other words, it would “know,” for us, all there is to 
know about arithmetic. What really drew my attention to the machine 
called computer—the term computer was used in the 19th century to denote 
a profession carried out by human beings—was a totally different 
question: Does the abacus know arithmetic? (The human being called 
computer by his profession knew arithmetic and probably more than 
that.) Furthermore: Does the computer know—as much as the human 
called computer—what it is processing? If it does, then does this 
understanding of what is computed affect the outcome? And again, if it 
does know, then how? (The human computers learned it and continued 
learning as they were exposed to new data.) Where does the machine’s 
knowledge come from? (The program carried out by the professionals 
called computers took the form of astronomical tables.) But before ending 
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this personal aside, I want to add one more piece of information. My 
computer—the one I was supposed to study and program—did not exist; 
it was on paper5. This sounds absurd today, but that was the reality in a 
part of the world—Romania—where the absurd was “invented.” (Just 
recall Eugen Ionesco’s theater of the absurd, and Tristan Tzara’s Dada 
movement.) And that was my good fortune because, after all, 
computation is about programs, not about switches, tubes, electrons, 
storage, keyboard, and all that makes up the necessary, but by no means 
sufficient, hardware. 
 Computation emerges as nothing more than a way of automating 
mathematics. Yes, human computers were slow, made errors, got sick, took 
time off. An automated procedure was by far more adequate and 
economical. Before digital computation, others tried to reach the same 
goal by using means corresponding to the pragmatics of their time. John 
Napier (1550-1617), the Scottish inventor of logarithms, tried (around 
1610) to simplify the task of multiplication. (Napier’s rods or bones, as 
they were called, served the purpose.) Blaise Pascal (1623-1662) worked 
on adding machines (1641); Gottfried Wilhelm Leibniz (1646-1716), who 
I consider “the father of the digital,” introduced binary code; Wilhelm 
Schickart (1592-1635) built a machine (described by Kepler) that 
performed sophisticated operations; Joseph-Marie Jacquard (1752-1834) 
built the loom, able to generate complicated patterns (computer graphics 
before the age of computers!). Many have tried to write the history of 
these early attempts at automatic calculations. And many made up all 
kinds of stories since the subject is conducive to fictional accounts. 
Obviously Charles Babbage (1791-1871) figures high in such books (and 
stories) through his two machines—the Difference Engine and Analytical 
Engine (which apparently were never built)—as well as William Stanley 
Jevons (1835-1882), who in 1869 built a machine to solve logic problems6. 
Through various stories, we became aware of E.O. Carissan (1880-1925), 
lieutenant in the French infantry who made up a mechanical contraption 
for factoring integers and testing them for primality. And we know of 
Leonardo Torres y Quevedo (1852-1936), who assembled (or is famed for 
allegedly having done so) an electromechanical calculating device that 
played chess endgames. 

                                                 
5 At the Polytechnic Institute in Bucharest (1955-1960), I programmed on paper and carried 
out debugging on paper. It could just as well have been done in my mind. 
6 Peirce, in Logical Machines (November 1887, published in The American Journal of Psychology) 
described the Jevons machine, as well as Marquand’s machines. He also pointed out that the 
study of the transition from such machines to the Jacquard loom would “do very much for 
the improvement of logic.” See The Writing of Charles S. Peirce, Peirce Edition Project, Vol. 6, 
1982, p. 72. 
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 This short account (which omits many details) is only indicative of an 
understanding of temporality that extends well beyond the current use of 
the word “program.” Each of the individuals—scientist or not—
mentioned above programmed, but more in the sense in which the abacus 
is programmed, not the digital machine, which is at the heart of 
computers today. One can say that the abacus is “hardwired;” in other 
words, it is its own program. Dependence on the hardware is implicit in 
mechanical and electro-mechanical contraptions. Napier’s rods and 
Pascal’s adding routines are timeless. Indeed, today they would allow us to 
carry out operations with the same degree of precision as in the days in 
which they were conceived. Even in our days, the Jacquard loom serves as 
a model of programmed patterns, the only difference being that in a 
program we can handle more data and readjust the “digital loom” in 
almost no time.  
 Since I mentioned Babbage, two things deserve to be highlighted: He 
extended the meaning of the word engine, corresponding to the machine of 
the Industrial Age, to a processing unit of mathematical entities. As a 
cognitive instrument, the metaphor affected the future understanding of 
machines meant to process information. Some7 attributed to Charles 
Sanders Pierce a computer using the electro-mechanical switches of a 
hotel system (pointing to rooms reserved, occupied, vacant). Peirce went 
far beyond Babbage, as he wrote upon the latter’s death8:  
 

But the analytical engine is, beyond question, the 
most stupendous work of human invention. It is so 
complicated that no man’s mind could trace the 
manner of its working through drawings and 
descriptions, and its author had to invent a new 
notation to keep account of it (p. 458). 
 

He also pointed out very precisely that “Every reasoning machine [as 
Peirce called them] . . . is destitute of all originality, of all initiative. It 
cannot find its own problems; . . .”9 
 

                                                 
7 Ketner, Kenneth L. The Early History of Computer Design: Charles Sanders Peirce and 
Marquand’s Logical Machines, The Princeton University Library Chronicle, Vol. XLV:3, Spring, 
1984. And: Gardner, Martin. Logic Machines and Diagrams, 1959. 
8 Peirce, Charles Sanders. Logical Machines, The American Journal of Psychology, November 
1887, p. 70. 
9 Peirce, Charles Sanders. Charles Babbage, Nation 13 (9 November 1871): 207-208, 
reproduced in the Peirce Edition Project, Vol. II, 1984, pp. 457-459. (See also Endnotes.) 
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The automation of calculations for ballistics in Howard Aiken’s (1900-
1973) Mark I (1944) and in the artillery calculations on a general-purpose 
electronic machine, on the ENIAC (at the Moore School of the 
University of Pennsylvania) are in fact the identifier for computation. 
Indeed, automated mathematics is the shorthand for the initial computer. 
Behind this not trivial observation we find the origin of almost all the 
questions preoccupying us today in respect to computation. This begs 
some explanation. Descartes proclaimed the reduction of everything to 
the cause-and-effect sequence and the reduction of the living to the 
machine as the embodiment of determinism. This reduction resulted in 
the description of time as duration, and of the living as functionality 
(which the machine expressed). The program of the Descartes type of 
machine is given once and for all time. It does not change, as performance 
does not change unless the components break down. In the deterministic 
machine, the implicit time dimension pertains to its functioning, which is 
dictated by the physical characteristics of the components. Such a 
machine exists, like everything else in Descartes’ world, in the time 
dimension of existence reduced to duration. 
 With the advent of the computer, the implicit assertion is reasonable: 
For the class of mathematical descriptions of the physics of ballistics, 
artillery calculations in particular, we can conceive of a machine that will 
automate the calculations. In other words, the determinism of the physics 
described in mathematical equations of ballistics is such that we can 
automate their processing. One can generalize from such equations to 
many other phenomena. Space exploration, as well as the trivial 
description of playing soccer, comes easily to mind. One can take the 
mathematics of the particular ballistics problem as an attempt at modeling 
many phenomena of practical impact. If we know how to handle such 
difficult descriptions, we already know how to handle simpler cases, 
ranging from simulating a game of billiards, to building games driven by 
the same program, and to building a control device to guide a rocket. The 
abstraction of mathematical descriptions, to which I shall return, makes 
them good candidates for an infinite variety of concrete applications.  
 This is no small accomplishment. But it is by far not yet what we 
understand when we use the words “computer” and “programs.” We 
need to be even more specific. Ballistic equations, as complex as they can 
get, are but a small aspect of mathematics. (In the meanwhile, they have 
been substantially improved.) For all practical purposes, a dedicated 
machine (driving a cannon, for instance) is nothing more than a 
description of the task to which it is dedicated. The implicit assumption is 
that of Descartes’ machine: it performs within a world that is regular, 
repetitive, and predictable. Even the variety of applications it might open 
is treated the same way. But once we transcend the specialized machine 
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and enter the domain of computation as a universal process, we transcend 
the boundaries of the reductionist perspective. And we are forced either 
to accept the model of a permanency that extends from the physical to 
the living and to society, or to acknowledge dynamics and take up the 
challenge of understanding knowledge as process. More questions to 
come our way and guide our endeavor are: 
 
- Is everything reducible to mathematical description? 
- Is everything describable in the language of 0, 1 (precision vs. 

expressiveness)? 
- Is Boolean logic the expression of all there is to the logical decisions we 

make in life (whether it is a matter of deciding what to have for 
breakfast or how to understand the genetic code)? 

 
 The computer understood as automated mathematics carries a Cartesian 
curse with it: If something is reducible to a mathematical description—or 
if our mathematical descriptions are abstract enough—it can be 
computed. Many scientists and engineers live by this notion. They 
simulate life in computational form and study it as though it were real, as 
real as our skin, pain, birth, death—only on a more global scale. Others 
draw our attention to a simple realization: Our descriptions, regardless of 
the medium in which we produce them, are constructs. Their condition is 
not unlike the condition of everything else we construct, subject to 
physical limitations, but also nothing more than products of our minds. 
Such mind products are focused on understanding the context in which 
our individual and collective unfolding as human beings takes place. 
 Today we call the mathematical description clause a necessary condition 
for something to be expressed through computation as we know and 
practice it. We add to it the expectation of a logical description. To be 
computational means to be expressed through a computational function. 
That this condition is ultimately insufficient is due to the time factor. 
Imagine that we have captured whatever is of interest to us (for our work, 
enjoyment, inquiries, etc.) in computational form. And imagine that we 
have enough computational resources to process our data. Time limits the 
endeavor since many computational functions are undecidable or 
intractable, which basically means that it will take time beyond what we 
dispose of (the lifespan of an individual or a generation) to perform the 
computation. Complexity has its price. Descartes was not in a hurry. For 
him the clock’s rhythm was fast enough to guide his descriptions of the 
living as being no more than a machine that processed sensorial 
information. Now that our clocks have become very fast—the beat of the 
digital engine at the heart of our desktop machines reached the gigaherz 
level—we hope to recover some of the complexity that in more steady 
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times was done away with. Still, the most intriguing questions we would 
like to address remain outside the domain in which automated 
mathematics and automated logic (sometimes called reasoning) supports 
many of our current theoretical and practical endeavors. 
 This brings up the more probing question of the language describing 
our inquiry. If we want to acknowledge time, we have to deal with 
process. The word describes a dynamic entity (something taking place 
over time). And as it takes place, it affects something else. In the 
mechanical age, to process meant to affect the physical and chemical 
appearance of substances we wanted to change, preserve, combine, or 
extract. Today the verb to process applies to an abstract entity called 
information. Indeed, computers can be understood only in association 
with the object of their functioning, only as processing data (the concrete 
form of information). To ignore that our notion of information stems 
from thermodynamics means to move blindly through a world that is 
constructed on the very premise of our acceptance of the laws of 
thermodynamics. 
 A closer look at how information is defined might tell us more about 
the time dimensions of programs than programs themselves. Shannon’s 
genius (and direction) is probably comparable to that of Descartes. He 
considered information strictly from the engineer’s perspective: Give me 
an input that my machine can expect, and I will make sure that the 
processing of this input will not alter it beyond recognition. His focus is 
on communication; and accordingly, he does not concern himself with 
anything but the physical properties of the carrier. Meaning is ignored, 
which means that, specifically, the semantic dimension is of no concern. 
What I describe here is well known; I myself have addressed this issue of 
the exclusive use of syntax more than once10. But there is one more thing 
to be added here: Syntax—as we know it from semiotics (to which I shall 
return) is timeless. It captures only the description of the carrier, not the 
meaning of the message, and even less the pragmatic dimension. Working 
for the Bell Telephone Company, Shannon was concerned with the price 
of sending messages through a telephone line. He noticed that a great deal 
of what makes up a message is repetition (what we call redundancy, i.e., 
that part of what we exchange in communication that carries nothing new 
with it). Actually, for Shannon, information was the inverse of 
redundancy,. If prior to reading these lines your knowledge of Shannon’s 
theory was that a) “He was the founder of information theory;” and if 
after reading these lines you double your knowledge to b) “Information 

                                                 
10 Nadin, Mihai. Consistency, completeness, and the meaning of sign theories: The semiotic 
field, The American Journal of Semiotics, 1:3, 1982, pp. 79-88. 
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theory is reductionist theory,” then I contributed a bit (pun intended) to 
your knowledge. 
 Recently, the American public were glued to their televsion sets 
watching the outcome of a celebrity trial (Martha Stewart, a household 
name in the USA, was on trial before a jury). It was a typical Shannon 
experiment. There were four counts on which the jury had to render a 
verdict of guilty or not guilty. Outside the courthouse, thousands waited 
to hear the outcome. TV cameras from around the world focused on the 
exit from the Manhattan courthouse. And as the foreperson was reading 
the jury’s verdict, strange messengers started a bizarre show: They ran 
ahead waving above their heads colored scarves—red for guilty on count 
1, blue for guilty on count 2, etc. The TV viewers had no access to details 
of the color code prepared in advance by journalists hurrying to be the 
first to make the verdict known. Prior uncertainty—guilty or not on count 
1, etc.—was halved each time a runner with a colored scarf ran down the 
stairs. Ultimately, if the jurors themselves had been on the stairs and used 
all the sentences read inside the courtroom, the information would have 
been the same. The text they would have read would be informationally 
equivalent to the color of the flag. One bit is defined as the information 
needed to reduce the receiver’s uncertainty by half, no matter how high 
that prior uncertainty was. It is a logarithmic measure, and the formula 
behind the whole thing is 
 
 
 
 
This says that information, defined on the premise of the reductionist 
machine model, is commodity, quantifiable like energy consumption, or 
like currency flows. In this respect, every program that is based on the 
assumption that entropy (a concept originating in thermodynamics and 
describing the disorder of a system) is a good model for information 
dynamics remains fundamentally in the realm of physical entities and their 
respective deteministic laws. This is the model of the carrier (the sign) 
reduced to its appearance (the syntax). 
 In the realm of the living, which always includes the physical but is not 
reducible to it, entropy only partially qualifies the dynamics of the whole. 
Accordingly, for all programs pertaining to artificial machines, Shannon’s 
information theory is an appropriate foundation. But once we enter into 
living computations, or into the promising hybrid computation (living and 
artificial in some functional connection), the notion of information itself 
is no longer adequate. With the living, time, in its richness—that is, no 
longer only duration and no longer a one-directional vector—has to be 
acknowledged and indeed accounted for in the programming. 

                n 
H =       − ∑   Pi log

2
 Pi (bits per symbol)

               i=1 
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 In recent years, the Boltzmann equation 
 

S = klogW 
 
—in which S stands for entropy, k is a constant (the Boltzmann constant), 
and the logarithm of the states of a system W (“elementary 
complexions”)—which stands behind Shannon’s work, underwent 
scrutiny. Constantin Tsallis11 belongs to those who noticed that under 
certain circumstances, some systems will actually undergo a reduction in 
their entropy. This new theory of disorder takes into consideration the 
dynamics of self-organization. Moreover, Leo Szilard12, in describing 
biological processes, took note of the decrease in entropy in living 
systems. With all this in our minds, it is important that we realize that 
sooner or later information theory itself will have to be redefined in order 
for us to account for the fundamentally different dynamics of life.  
 My own position is that anticipation is what distinguishes the living 
from the non-living, and that anticipatory computation can be achieved 
only by effectively redefining information as to include not just the 
semantic dimension, but foremostly to make the pragmatics possible. 
From reaction-based computation expressed in programs that are 
machines, to anticipatory computation, we will have to redefine many of 
our fundamental premises. Together with the bit, an antebit will describe 
the process. The bit will effectively describe the probabilistic domain (and 
all the post-fact statistical information), while the antebit will describe the 
possibilistic domain (and all the pre-factual opportunities). This brings us 
back to the implementation of information processing in what we call 
computers (information processing machines, in particular, programs). 
 Mathematics allows us, among other things, to describe what we call 
reality. It is not the only means of description. So-called natural language 
can be used for the same purpose. Images, in one form or another, are 
also descriptions. So are sounds. Some domain-specific means of 
description constitute the “language” of those domains: the formalisms of 
chemistry (chemical formulas are a well-defined means of description), of 
genetics, or of logic (focused on thinking). That such means of 
description of what there is can, at the same time, be a means of 

                                                 
11 Tsallis, Constantine, V. Latore, M. Barager, A. Rapisarda. Generalization to non-extensive 
systems of the rate of entropy increase: the case of the logistic map, Physics Letters A 273, 
2000. 
12 Szilard, Leo. Über die Entropieverminderung in einem thermodynamischen System bei 
Eingriffen intelligenter Wesen, Z. Phys. 53, pp. 840-856. (See also: On the decrease of 
entropy in a thermodynamic system by the intervention of intelligent beings, Behavioral 
Science, 9, pp. 301-310.) 
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synthesizing something that is only in our minds will not preoccupy us 
here. But we should never ignore the complementary nature of the 
analytical (description) and the synthetical (design). Programs are a true 
exemplification of this condition. 
 Mathematical description expresses what is called declarative knowledge. 
One can generalize to the declarative knowledge expressed in logic, 
chemistry, genetics, etc. It concerns what is, as captured from a certain 
perspective. For instance, the ballistic equations whose solution prompted 
automation in a computer program describe the physics upon which 
artillery is based. That there is more to a cannon than only trajectory is 
well known, even by those who have never operated a cannon. But for all 
practical purposes, the program to guide artillery actually describes the 
physics of throwing a ball from A to B. This program is no longer an 
expression of declarative knowledge, but of imperative knowledge: how to 
hit a target (which might even move from B to C as we try to target it 
from A).  
 In relation to mathematics, computer science, which has programs as a 
goal (among others, of course), belongs, not unlike machine engineering, 
to the domain of imperative knowledge. It consists of procedures that are 
descriptions of how to perform activities. And as any other procedure—
let’s say hammering a nail into a wall—it is based on recursion: it has its 
own actions as a reference, it is self-referential. There is an implicit 
circularity here: all of it is repetitive (defined in terms of what is repeated, 
i.e., in terms of itself). Simply stated, what governs the whole endeavor is 
a strategy of decomposition: divide the action into parts. If each part has a 
well-defined identifiable task, this task can become a module for other 
procedures. The abstraction process guarantees efficiency: One does not 
have to reinvent the hammering of the nail each time this action becomes 
necessary. By the same token, recursivity speaks of the successful 
reduction of the task into independent procedures. This is why computers 
are made of machines that contain machines that contain machines, etc. 
Every detail is suppressed in the process. The meaning of such modules 
ought to be independent of parameters not essential to the task. 
(Remember the program called factorial? The factorial procedure is 
independent of the size of the number n. Think about a procedure 
returning the volume of a complex object. The parameters of the object, 
or the nature of its surface, or the density of the material should not affect 
the calculation). 
 Let’s be clear about the following: Declarative and imperative 
knowledge can be conceived only as interrelated. We can easily realize 
how declarative knowledge (take a mathematical equation describing the 
reflection of a ray of light on a mirror) is “translated” into imperative 
knowledge (the computer program that shows the reflection). It is by far 
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more complicated to use imperative knowledge (a description of a scene) 
in order to infer from it declarative knowledge (a deduction: “There must 
be something blocking the reflection”); but it is an operation that is 
relatively often performed (for instance, in interpreting images captured 
by digital cameras). 
 There is only one reason to insist on these aspects: to make it clear that 
the more abstract the procedure, the more effective it is (provided that it 
is an adequate procedure). Abstraction ultimately means the squeezing out 
of time. We can build programs from modules only if they are time 
independent. Compound procedures have no internal time; their reference 
to duration is a reference to their internal dynamics, not to that of the 
world. The space and time effectiveness of programs within the 
reductionist view of computation concerns the space (storage) and time 
(synchronization mechanisms) implicit in the processing, not in the 
entities described. However, with computation, machines open up to time 
through the dimension of interactivity. While every other known machine 
is timeless, computers open up the possibility of being driven by data 
from the order of events (as in playing a game), better yet, of reflecting 
the order of events, or of introducing (in robotics, for example) an order 
of events that allows for the performance of a specific task, or of 
achieving a complex behavior. This new dimension renders the 
deterministic mold relative. 
 In order to achieve interactivity, programs rely on mathematical and 
logical descriptions that reflect the dynamics of the expected activity. If 
you want a real-time facility for correcting spelling in a word processing 
program, you have to provide a dynamic view of the activity called writing. 
Obviously, the more complex the activity—let’s say target recognition at 
microscopic levels (after labeling an ingredient of a medication, following 
its “moving” through the tissue subject to treatment, and even “guiding” 
it so that it reach a desired region), or at the interplanetary scale (the 
landing on Mars resulted in many examples)—the more elaborate the 
description and implementation in programs. At this level we no longer 
distinguish durations (the determinsitic reduction of time), but time 
variability: slower than real time, real time, faster than real time. We also 
identify the depth of time, as in synchronicity; or as in parallel streams of 
time (while process 1 unfolds, process 2, related or unrelated, unfolds 
within the same time scale or not, etc. etc.); or as in different directions 
(the time vector is bi-directional and probably even multi-directional).  
 Within this view, the machine model has to be revisited in the sense that 
the clear-cut distinctions characteristic of the black box (Input, Output, 
States) be redefined. In particular, the local state variable describing the 
actual state of the computational object has to be defined in such a way 
that it allows for change. Computational objects with state variables that 
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change correspond not only to trivial tasks subject to automation (such as 
bank account management), but also to very complex tasks (such as 
cooperative design over networks). Functional programming is not 
adequate is such cases. Imperative programming, which introduces new 
methods for describing and managing abstract modular program entities, 
is but one of the many methods developed for this purpose. Obviously, 
the description of the living that we call genetics is better adapted to the 
task of supporting interactivity. This explains why new forms of 
computation, which are based on the abstractions of particular fields of 
knowledge (e.g., genetics, quantum mechanics, DNA analysis), emerge as 
we try to capture time-based phenomena. From the viewpoint of time 
processes, a stone is in a different situation from a living entity. With the 
advent of anticipatory computing13, this becomes more and more evident. 
 Max Bense, the mercurial prophet of rationalist aesthetics in a country 
perverted by speculation, correctly noticed that “Nicht die mathematische 
Beschreibung der Welt ist das Entscheidende, sondern die aus ihr 
gewonnene prinzipielle Konstruierbarkeit der Welt”14. (It is not the 
mathematical description of the world that is decisive, but the principle of 
the constructability of the world that is gained from it, [translation ours].) 
Unfortunately, as was the pattern of his activity (and private life), he did 
not stop in due time. He went on to speak of “die planmäßige 
Antizipation…einer zukünftigen künstliche Realität,” (anticipation 
according to plan…of a future artificial reality [translation ours]); and 
finally, to ascertain: “Nur antizipierbare Welten sind programierbar, nur 
programierbare sind konstruierbar und human bewohnbar.” (Only worlds 
that can be anticipated are programmable, only programmable [worlds] 
are capable of being constructed and inhabited by human beings, 
[translation ours].) None of his illustrious students (whom he managed to 
antagonize through acts bordering on the irrational) noticed how 
deterministic thought in the end led their master to an upside-down image 
of the role of computation. But at least Bense had the stature of an agent 
provocateur. In comparison, the new theoreticians of “aesthetic 
computation” are at best pygmies too self-important to read what others 
wrote long before they did. 
 Concurrent processes, i.e., taking place in parallel, although not 
necessarily along the same time metric, are only an image of the 
complexity of the time identity of interactive programs. The timeliness of 
programs that by now have adaptive qualities and display evolutionary 

                                                 
13 Nadin, Mihai. Anticipation—A Spooky Computation, CASYS, International Journal of 
Computing Anticipatory Systems (D. Dubois, Ed.). Liege: CHAOS, Vol. 6, 1999, pp. 3-47. 
14 Bense, Max. Einführung in die informations theoretische Ästhetik (Introduction to Information 
Theory Aesthetics). Reinbeck, 1969. 
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characteristics is quite different from that of “canned” programs. Their 
future is different from what industry understands today when they 
produce the next version of a program or an operating system. In fact, in 
addressing the issue of timeliness and future-ness of programs, we soon 
come to the conclusion that technology, as the embodiment of the 
successful use of programs, can limit performance but should not, as still 
happens, drive content. As interactivity becomes the driving force, we 
should be able to move beyond task-based computation to a pragmatic 
foundation. In other words, instead of the routine of launching “canned” 
programs of timeliness applications (word processing, paint program, 
browser, etc.) under the guidance of operating systems, we should be able 
to execute pragmatic functions—I want to represent my data for 
colleagues all over the world—that would interactively select the 
appropriate applications and use them as we, users in a deterministic role, 
do today. This role change will render the overhead of training operators 
obsolete, and our question regarding program timeliness will take on new 
meaning: Is the co-evolution of the living and the programs it conceives 
possible? 
 Deep down, in the digital engine, there are two elements controlling and 
making computation possible: an “alphabet” and a “grammar.” These two 
together make up a language—machine language. The alphabet consists 
of two letters (0 and 1); the grammar is the Boolean logic (slightly 
modified since Boole, but in essence a body of rules that make sense in 
the binary language of Yes and No in which our programs are written). 
The assembler—with a minium of “words” and rules for making 
meaningful “statements”—come on top of this machine language; and 
after that, the level of “formal language” performance in which programs 
are written or automatically generated. Such programs need to be 
evaluated, interpreted, and executed. Here I submit to the reader 
structural details we all know (some in more detail than others) but which 
only rarely preoccupy us. My purpose is very simple: to lend meaning to 
my point that computers are semiotic machines (which I first articulated 
over 20 years ago15). Too many scholars took over my formulation (with 
or without quotation marks or attribution) without understanding that as a 
statement, it is almost trivial. What my colleagues—some of them 
respectable authors and active in semiotic organizations claiming 
legitimacy—totally missed is the need to realize that such a description 
makes sense only if it advances our understanding of what we describe. 

                                                 
15 As both computer scientist and semiotician, Mihai Nadin went on record that computers 
are semiotic machines as early as 1976 (see Nadin, Mihai. The repertory of signs, Semiosis, 
Heft 1, 1976, pp. 29-35; Sign and fuzzy automata, Cahiers de Linguistique Théorique et Appliquée, 
XIV, 1, 1977). 
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To say that the computer is a semiotic machine means to realize that what 
counts in the functioning of such machines are not electrons (and the in 
the future, light or quanta) but information expressed in semiotic forms, 
in programs, in particular. We take representations (which reflect the 
relation between what a sign represents and the way we represent it) and 
process them. This is the Shannon-based model. (Or should I say the Bell 
Telephone model?) Moreover, as we use computation, we try to assign a 
meaning to our representation. Since in the machine itself, or in the 
program that is a machine, there is no place for a semantic dimension, we 
build ontologies (which are databases not dissimilar to encyclopedias or 
dictionaries) and effect association. This is how search engines frequently 
work; this is what stands behind the new verb “to google” and our actions 
when we start research by identifying sources of knowledge in the world-
wide Web. 
 But even our ontologies, hand-made or automatically generated, stand 
on the “shoulders” of the language of zeros and ones (of Yes and No) and 
of the Boolean algebra that is the grammar of this primitive language. Any 
semiotician worth his salt should by now know that the means of 
representation actively influence and affect the representation. They are 
not neutral, but constitutive of interpretant processes that make up our 
way of thinking, that influence our actions. To say that computers are 
semiotic machines means to realize that the interpretant, i.e., infinite 
semiosis (the sign processes through which we become part of the signs 
we interpret) causes us to act differently, to think differently, to express 
ourselves differently from the way we did when language (and literacy) 
were the dominant means of expression, communication, and 
signification. 
 The extreme precision brought about by an alphabet of two letters and a 
grammar of clear-cut logic comes at the expense of expressiveness. The 
more precise we are, the less expressive the result. In terms of program 
timeliness—future-ness, in particular—this means that we could capture 
time and make it a part of programs only—but only when computation 
will transcend, as it partially does, not just its syntactic dimension, but also 
the semantic dimension of the signs making up programming languages. 
Indeed, at the moment when computation will be pragmatically driven by 
what we do, it will acquire a time dimension coherent with our own 
time—and will reflect the variability of time. We are what we do, and 
accordingly, if we could integrate programs in what we conceive, plan, 
execute, and evaluate, and thus in our own self-constitution, we would 
establish ourselves not just as users, but also as part of the program. For 
this to happen, many conceptual barriers need to be overcome. We would 
have to address the need to redefine information, to redefine the alphabet 
and the logic, to rediscover quality as the necessary complement of 
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quantity, and to understand the digital and analog together. Within my 
program, which is a bit more radical, this means to practice not only the 
deterministic reaction mode of the physical, but also the anticipatory 
characteristic of the living. 
 
 
Endnotes 
 
Footnote 1. The Civilization of Illiteracy focuses on what makes the 
humankind’s successive ages (referred to as pragmatic framework) 
possible and necessary. The German translation is an abridged version of 
the English 
 
Footnote 9. In the same article, Peirce gave some details regarding 
Babbage: 

About 1822, he made his first model of a calculating 
machine. It was a “difference engine,” that is, the first few 
numbers of a table being supplied to it, it would go on and 
calculate the others successively according to the same law (p. 
457). 

He discovered the possibility of a new analytical engine to 
which the sufference engine was nothing; for it would do all 
the arithmetical work that that would do, but infinitely more; it 
would perform the most complicated algebraical processes, 
elimination, extraction of roots, integration, and it would find 
out for itself what operations it was necessary to perform; . . . 
(p. 458) 

 
Footnote 15. As both computer scientist and semiotician, Mihai Nadin 
went on record that computers are semiotic machines as early as 1976 (see 
Nadin, Mihai. To ward off any claims to the opposite, the pertinent 
articles are listed as follows: The repertory of signs, Semiosis, Heft 1, 1976, 
pp. 29-35; Sign and fuzzy automata, Cahiers de Linguistique Théorique et 
Appliquée, XIV, 1, 1977). In the USA, Nadin announced that “the 
computer is the semiotic machine par excellence” (cf. Visual semiotics: 
methodological framework for computer graphics and computer-aided design. Lecture 
presented at the conference, The Designer and the Technology Revolution at the 
Rochester Institute of Technology, Rochester, New York, May 13-15, 
1982). He was the first to offer classes at the Rhode Island School of 
Design, Brown University (both in Providence, RI), the Rochester 
Institute of Technology, and the Ohio State University. He did semiotic 
consulting for Apple’s Lisa computer (user interface evaluation) in 1981-
82. Further documentation can be found in: Interface design and 



 

 19

evaluation, Advances in Human-Computer Interaction, vol. 2 (R. Hartson, D. 
Hix, Eds.). Norwood NJ: Ablex Publishing Corp., 1988; The bearable 
unbearability of the rational MIND, Ästhetik, Semiotik, Informatik (F. Nake, 
Ed.). Baden-Baden: Agis Verlag, 1993, pp. 63-102.  
 Until about 1995, the semiotic establishments at the leading centers in 
the USA, North and South America, and Europe, were still emphasizing 
semiology (as opposed to Peircean semiotics). They had not even come so 
far as to consider the visual as a domain worthy of semiotic research. 
Once so-called semioticians decided to consider the computer, they did so 
without checking whether anyone had written anything before they had 
their “revelation.” (Sadly, this is the case with many fields of academic 
endeavor, such as the aesthetics of computer science.) And, as has been 
the case with most endeavors in semiotics, the scholars/scientists either 
misunderstand the subject or, blinded by their brilliant discovery, lose all 
sense of academic rigor and lead others into the pit.  
 Some examples of people who took over the term “semiotic machine” 
without giving due and proper credit are:  Pedro Barbosa, with José 
Manuel Torres (O computador como máquina semiótica, no date); Dr. 
Gerd Döben-Henisch (Semiotic Machines. Theory, Implementation, 
Semiotic Relevance, Aug. 6, 1996, 8th International Semiotic Congress of 
the German and the Netherlands Semiotic Societies); Karin Wenz 
(Representation and self-reference: Peirce’s sign and its application to the 
computer, Semiotica 143–1/4, 2003, 199–209). Among the conferences and 
congresses held on the subject, and where, again, Nadin’s fundamental 
work was totally ignored, are: 10th International Congress of the German 
Association for Semiotic Studies (DGS), University of Kassel (Germany), 
July, 19-21, 2002; Section “Semiotics and the Computer” (under the 
auspices of Winfried Nöth, Kassel University, Department of English and 
Romance Language Studies [of all things!]). 
  
 
 


