
Proceedings of

the Second Eurographics Workshop

on

Intelligent CAD Systems

- Implementational Issues -

1 l-l 5 April, 1988

Koningshof Conference Centre

Veldhoven, The Netherlands

Coovriaht Information: No parts of this publication can be copied
without permission of the author(s) and the organizers of the
workshop (whose names appear in the Foreword).

Implementing Intelligent Processors

Mihai Nadin and Marcos Novak
The Ohio State University

1501 Neil Avenue
Cranston Center

Columbus, Ohio, 43201
U.S.A.

1. Introduction

In studying the problems involved in implementing Intelligent Processors (IPs) we

recognized that the metaphor of the design team advanced in the conceptual phase of

our work (Nadin and Novak 1987) represented only a methodological framework. In

order to achieve effective implementation, an operational mechanism had to be

conceived. Such a mechanism had to allow for operations on design entities as they

resulted in the processes of design.

More specifically, the necessary mechanism needed to be appropriate to intelligent

processes applied to :

1) all categories of design

2) the wide range of designed artifacts

3) the flow state (design as a fluid process)

as defined within the conceptual model. Our implementation work led to the discovery

that a combination of a genetic mechanism and neural network implementation are well

suited to the problem. The most complex objects we know, living forms, have evolved

through a particular kind of interaction of patterns, i.e. random mutation and

cumulative change through the propagation of the coded genetic information of

surviving offspring(Dawkins 1986). Design artifacts, as products of complex living

entities, can be seen as the results of processes analogous to the genetic.

The need to delegate the task of the parametric variation of a large number of

elements to the system, with little or no direct supervision, prompted us to develop a

genetically inspired mechanism that allows design alternatives to ‘evolve,’ as well as

to develop through direct designer-machine interaction. The high degree of

1

interconnection and the multiple interrelations of design parameters suggested a neural

network implementation, within the overall structure of a hybrid machine. By no

accident, neural networks implementations prove to be best suited for the mechanism

adopted.

Our implementation framework, in outline form, consists of a network of IPs that act

on diagrams; the diagrams control ‘design gene’ and ‘design chromosome’ coding strips

within a genetically inspired mechanism: the ‘design genes’ provide weighted inputs to

a neural net; and the neural net determines the parameters that form particular

instances of pre-existing archetypes. Each of these aspects of the Design Machine,

their interrelation and function, and the modes of operation they allow will be

presented in detail below.

2. Overview

2.1 A working definition of intelligence (conceptual model revisited)

Our definition of intelligence (Nadin and Novak, 1987) is recognition, manipulation,

and synthesis of patterns (and patterns of patterns). Our hypothesis is that these

operations happen at many levels. At very low levels, they are evidenced in the

ability of intelligent entities to observe similarity, repetition, and affinity, while at

higher levels, they result in the recognition, manipulation, and synthesis of high level

types (commonly known as typologies).

2.2 Search vs. generation

Design has often been described as a search, and various heuristic methods for dealing

with what seems to be a very large search space have been proposed . Yet it often

seems that designers do not search at all, but arrive at a solution by introducing a set

of relationships that the design is to have. This normative aspect of design is

analogous to the approach one takes in solving differential equations. While during the

design of a complex object there are many instances which require efficient search

techniques, the most complex and interesting designs result from the complex

interactions of predetermined patterns. In the machine we propose, this is

accommodated by offering the designer the capability of setting generative systems

to guide the parametric variation of parts, or the capability to set the direction,

2

vector, or gradient of the mutation of ‘design genes’. However, as it will become

clear in the next section, we do not limit ourselves to the pattern imposition model.

2.3 The Design Machine as a network

MIND is a Design Machine constituted as a network of intelligent processors:

External knowledge
General knowledge
l Contexts
-Process
l Problems
l “Needs” links to other IPs

Interface Intelligent interface

Internal knowledge

Intelligent
macros I Software

drivers
I I drivers II mode selections

I

Extensions

The context for its functioning is the culture at large. Within culture, the categories

of designed objects, events, systems of relations, and systems of reference are

acknowledged and constitute a referential framework for future design work. Newly

designed items are compared to those available and accepted or refused not only in

view of their intrinsic characteristics, but also in respect to the “design language” of

any given time and environment.

Within the network, no hierarchy is established among the various processors. This

network constitutes and embodies the metaphor of the Desian Team. The “knows” and

“needs” links of the IPs interact and “fire” multiple processors in order to distribute,

collect, and integrate information.

The intelligent design process is one of design evolution, and consists of contributions

to the final design by each member of the team. The branching out (hermeneutics) and

3

the coagulation of the design solution (heuristics) are the result of an implementation

of intelligent parallelism as a dynamic interconnection of neural cells. The design team

metaphor makes parallelism necessary: parallelism influences implementation

decisions.

3. Designata and cognitive characteristics of design

The development of Intelligent Computer Aided Design (ICAD) systems requires a three

 part definition of the problem , derived from the answers to the following questions:

How do people design? What do people design? What are the characteristics of the

design process?

3.1 The ‘how’ of design

There is a limited number of ways in which people can design:

Design as : Re-Design

Selection from existing parts/types and Recombination

Problem-Solving

Evolution

Pattern-Imposition

Invention

They are computationaly different, but an ICAD system should accommodate all of

them. Our previous insistence on the pattern imposition path reflects an interest in an

area of design considered until now too hard to be dealt with (Chandrasekaran 1985).

3.2 The ‘what’ of design

The range of designed artifacts, which we call designata can be specified as follows:

objects

events

system of relations

systems of reference

4

In this list, the first group specified is made up of design artifacts commonly

identifiable as objects (graphic design in 2-D, product design in 3-D, architectural

spaces as 3-D voids); the second, entities identifiable as events (sequential

ceremonies or sequences of actions pertinent to a task, configurational designs, such

a s temporal reasoning, plans of action); the third, systems of relations (games,

simulations, organizational structures, etc); and the fourth, systems of

reference(artificial, notational, textual, etc.). The intention of this method of

categorizing is to cover the entire gamut of entities to which the qualifier desianed

applies within culture, and which a design machine should aim to accomodate.

3.3 The process of design

The support of a fluid state of thinking, for which we have appropriated the term ‘flow

state,’ is the third layer of concern. In order to maintain the appropriate cognitive

characteristics during the activity of designing, we propose a range of interactive

possibilities from direct manipulation of design elements to automatic design through

the evolutionary model. A time-memory window (cf. 4.2.2) will be specifically

implemented, given the implications of the non-serial model of design pursued.

We want to stress here that all the layers described are to be supported by the ICAD

system. This definitely constrains the implementation of IPs but will result in a

system which is not only a collection

an environment for intelligent design

of tools controlled in an intelligent way, but also

processes.

4. Implementational aspects

The implementational framework of the Design Machine is constituted by the

architecture through which the IPs act. The layers of the architecture are:

 a. diagrams

b. design genetics

C. parametric types

We bring together an algorithmic and a non-algorithmic (neural network) approach. On

the algorithmic side, the structure of tasks and algorithms require that we maintain an

inference procedure and a representation function. The inference procedure

5

implemented in the activity of the IPs is abduction. In the process of design, each new

potential design is an implicit explanation. These explanations are given in the form of

diagrams and are applied as input on IPs, implemented as neural networks. On the non-

algorithmic side the need for parallelism, robustness, and plasticity requires that we

ensure relaxation and learning (basically through back-propagation). The so-called

structured neural networks (Feldman et al 1988) appear to be best suited for IPs

implementation. The interaction between the two approaches definitely reflects the

complexity of the design tasks considered in our model. An issue of special concern
.

the interaction between the network and routines necessary to support design work

(such as CAD tools).

4.1 Diagrams

is

The main element of interaction which we propose, and which is central to our data

structures, is the diagram. Diagrams are structured templates for the interactive

control of coding strips. At the macro level, the diagram functions as an organizing

device for different kinds of information. It contains scripts of expected actions,

frames of expected values with slots containing default values, and special categories

called roles and performances. Roles contain information that modifies the information

in the diagram to correspond to different viewpoints (e.g., designer vs. client vs.

user). Performances contain information about how things should act, that is,

information that can guide the system in simulations of reality.

insmx3ions for
VarYi%

role

performance

script

vector

weights and
dimensions

6

Diagrams, by definition, explain rather than represent-showing components,

arrangements, and relations-and in that sense embody a viewpoint. Different

viewpoints, identifying different contexts, can thus be seen as different diagrams

(i.e., showing different characteristics by explaining the object according to different

“filters”). Diagrams are descriptions structured according to a determined

perspective. They act as implicit context identifiers and filters. They are both visual

and verbal. Since diagrams are viewpoints, multiple diagrams can be generated from

the same object description by filtering out dimensions of the problem that are

secondary to the task at hand. Thus, diagrams are also projections.

Diagrams are the main token of exchange between IPs and the designer. They consist

of parts, attributes of parts, hierarchies of parts, degrees of similarity between

parts (affinity of extensional attribute lists within a particular view) and are nested,

layered, and interactive. They present relations among parts, (again attributes,

hierarchies, degrees of similarity). Parametric relations (Mitchell 1987) can be

described as how a change of parameter allows for the generation of new diagrams

showing the influence of the chosen parameter. These relations are implemented in the

algorithmic path of the machine as associations between ‘parameters specified through

functions(a generative system nmay be thought of as a collection of such functions).

Actions on the components (parts, relations, attributes) are supported by using

operations on diagrams (insertions, omissions, substitutions as well as higher level

operations). In view of their condition as explanatory visual descriptions, diagrams

can be processed as abductions. In this case, inputting diagrams into IPs by acting on

components leads to processes of abduction, i.e., design inferences.

Diagrams allow the implementation of three specific aspects of design. First,

diagrams act as filters, allowing the designer to impose an abstract structure on the

problem by concentrating on particular information while ignoring aspects that are not

directly relevant. Second, diagrams embody viewpoints. The problem at hand is

different according to the viewpoint we choose to emphasize -designer, client, user-

and is represented by different diagrams. Third, diagrams imply contexts. A diagram

representing the design of a bridge in the context of the historical development of

bridges differs from a diagram representing the design in the context of regional

differences in vernacular form, and is different again from one showing the design in

the context of technological development.

7

The main data component in a diagram is visual, as the name implies. Parts and

relations of parts are represented in a network. Each node of the diagram can be

another diagram. Geometric relations in the diagram, such as size, proximity,

overlap, alignment, and containment, carry meaning; modification of the diagram in

such ways directly affects the internal data structures and the design itself. Although

the diagram is two-dimensional, it can be interpreted as representing more

dimensions. In fact, the problem of ‘emergent form’ (Mitchell et al 1987) pertaining

to diagrams is one which we attempt to resolve by

designer has access to. Multiple interpretations of

instances of the initial diagram.

establishing ‘implied’ nodes that the

diagrams can co-exist as modified

For reasons of terminological clarity, we want to specify that the diagram is not an

association net. This “negative” definition (what it is not) allows us to define some

important characteristics:

First, it is a diagram of diagrams, i.e. it is nested.

Second, it is more than a topological graph; it is also a geometric entity. In

diagrams, proximity and size, for example, are recognized.

Third, diagrams can recognize union-intersection-difference relations, etc.,

i.e., display properties characteristic of a set-theoretic entity.

Fourth, diagrams are used as an intelligent interface, allowing direct action

on relations and parts

Fifth, they provide assistance in the ‘emergent form’ problem by constructing

node and relation variables automatically at the intersections of pre-existing

connections,

Sixth, like tracing paper, diagrams are layered, so that alternative diagrams

can be superimposed and ‘traced’ to produce new variations.

4.1.1 Stacks of diagrams

8

As far as the designer is concerned, the final design is represented as a stack of

diagrams. This implies that the system has an underlying layer of ‘translators’ which

take the information in the diagrams as input and, through interaction with the design

genes, or with the design chromosomes, drives the appropriate parametric modeling

software. Alternative stacks of diagrams imply alternative design solutions still

under consideration.

. Diagrams have one additional role in the Design Machine. A stack of diagrams showing

the present state of the design process and the history of the project to date is

generated by the system and is accessible to the designer. Thus the ‘flow state’ is

supported in the manner of nonlinear possible associations characteristic of human

process of design.

4.1.2 Diagrams and intelligence

In order to embody intelligence, diagrams must accommodate analysis and synthesis,

and have the ability to withstand incompleteness and conflict. This is accomplished by

, . linking the diagrams to the neural network. Hence, the DM can indeed learn

design experience

memory, adaptive

characteristics.

as it results from its functioning. Neural networks have

learning from examples, and combinatorial optimization

4.1.3 Four categories of design

Our initial premise was that design is essentially a visual activity occurring

cognitive level. We looked at what is common to all three types of design

from the

associative

at a high

(Chandrasekaran 1985) and discovered that diagrams, as defined above, prove to be

best suited for the operational mechanism that we needed. This discovery is supported

by Peirce’s work on thinking (1887) and the relation between diagrams and abduction.

In applying diagrams in our initial concept, we discovered that the three commonly

acknowledged categories of design could easily be described as particular operations

on diagrams. Furthermore, a fourth category could be added:

Category Three: Modify “geometry” of existing diagram;

Category Two: Modify “topology” of existing diagram or combine diagrams;

9

Category One: invent diagram;

Category Zero: Invent archetype.

4.1.4 Vector set

A data structure, which we call a vector-set, is associated with each diagram or

stack of diagrams. This allows the designer to delegate tasks to the IPs by specifying

the directions in which various variables are to be modified, either systematically,

. using a generative system, or randomly, in ‘evolution’ mode, along the genetic

mechanism of design we adopted.

Behind the diagram is a second data structure which is usually hidden but which can be

modified directly, either by the designer or by the IPs. This data structure is a ‘list of

lists’, a genetic strip containing the information of the parts that make up an object.

Each sub-part has a corresponding strip. Changes to the diagram are directly

translated into changes

the diagram.

in the strip. Conversely, changes in the strip directly affect

4.2 Design genetics

The genetic mechanism employed involves an analogy that is particularly powerful in

assisting the design of complex artifacts. In biology, genes control specific

characteristics of a life form, such as eye color or- overall height, for instance. While

genes remain the same, particular ‘values’ in the gene can differ, producing variations

of that characteristic (changing the values of a gene will change blue eyes to brown

eyes). An entire life form, on the other hand, is represented by a collection of genes.

Variations of this collection of genes or ‘chromosome’, even by simply changing the

order of identical genes, produces different species.

Besides the evident analogies to the “evolution” of design, we have chosen to

appropriate this system because several difficult design operations can be expressed

directly in genetic terms, which in turn allow for computational descriptions and

operations upon them. Genes can be seen as parametric controls of pre-existing

‘types,’ directly related to the idea of design as re-design. ‘Gene splicing’ expresses

the invention of new design ‘species’ through the novel combination of pre-existing

types into new ‘chromosomes.’ ‘Genetic engineering’ allows the creation of entirely

10

new genes. ‘Evolution’ and ‘breeding’ correspond to random and non-random mutation

with cumulative selection and change as practiced by designers.

To avoid confusion between the literal terms in their proper biological use and in the

computational use which we are implementing, we have adopted the terms ‘design

gene’ for the computational equivalent of a gene and ‘design chromosome’ for that of a

chromosome. Each design gene can be represented by an extensional ‘strip’ of control

and parameter information. Hence, a design chromosome is a strip of strips that

specifies a designed artifact uniquely as a particular collection of instances of the pre-

existing types. Of course, new types can be created as needed, as a separate

operation.

4.2.1 Modes of operation

Disposing of such strips of different length and complexity allows the system to

operate in several distinct modes:

1) Direct interaction/ Direct Mode. The designer (Natural Intelligent

Processor, NIP) manipulates the diagrams directly, implicitly altering the

underlying design gene structure. Changes in position or size modify the

particular parameters in the strip only (i.e. the geometry only), while

changes in number, kind, or correspondence modify the strip itself (i.e., the

topology).

2) Indirect interaction/ Delegation Mode. The designer specifies the

direction in which specific parameters are to be modified through the use of

the vector-set, and delegates the actual modification to IPs, which carry

out the task in the background. The designer is only interrupted when

several conditions have been met within a specified ‘time-memory window.’

3) Random mutation-Cumulative change/ Evolution Mode. Once the

strip/diagram tree for an object has been created by decomposing the

object into its underlying types, and while the designer is occupied with

other tasks (or away from the DM), the system continues the search in

‘evolution’ mode. Small random changes are made to the values in the design

gene strip, producing alternatives. Alternatives that do not conflict with

11

requirements survive and carry forward their design genes for further

mutation, while the others become extinct. Unlike hill-climbing, this

heuristic recognizes that progress can be made occasionally by “climbing”

down the hill. It also eliminates backtracking, without eliminating the

possibility of moving back to a previous position. Most importantly, it

recognizes that often what appears to be a weak alternative can become,

given sufficient time for refinement, the most viable alternative.

At any time, several alternatives co-exist and compete for resources (including

computational resources). When the number of competing alternatives becomes too

large for the available computational resources, the weakest members are eliminated.

4.2.2 Time-memory window

In order to support a non-serial model of the design process, we propose a time-

memory ‘window’. This concept implies that, at any given time, several alternatives

to either the whole design or to sub-parts are ‘alive’ within the system and are being

worked on by the IPs independently. If they reach a point when merging is possible

(because certain common conditions are met) within the time-memory window, they

are recognized and kept by the system. If not, they are removed and replaced by other

alternatives, also modified in parallel and observed within this window.

In addition to determining the parametric definition of objects through concatenation

and instantiation, the design genes are directly linked to the diagrams.

4.3 Parametric types

As we have seen, the Design Machine is implemented in a three-tiered architecture, a

a layer of diagrams representing reconfigurable neural connections (additional sub-

layers within this layer provide task subdivisions), a layer of genetic design, and a

layer of types.

The layer of types consists of four fully parametric modules, corresponding to the

four categories of possible designed artifacts (specifically, objects, sequences,

relational systems, and reference systems), which we have called designata. For

each designatum, we distinguish the following matrix:

12

This is to say that there are at least four levels of primitives that are of interest to

the designer, as shown in the the rows of the matrix. For instance, an architectural

design may be described as consisting of elements -such as columns and walls-

organized on a grid, ordered symmetrically, and explorina the formal idea of having

analogous plan and section relationships. The columns of the matrix show how the

variation of these elements is structured. First, for each row-item we can recognize

existing archetypes, such as different column types (doric, ionian, Corinthian) in the

element row, grid types (radial, central, orthogonal, triangular) in the organization

row, ordering principles (symmetry, asymmetry, clustering) in the ordering row;

and formal ideas (plan to section relations, overlap, transformation) in the formal idea

row.

Each pre-existing type, and any that are added to the system through its use, can be

parameterized, as implied by column two. Column three suggests that at this level the

system knows how to systematically vary those parameters by employing a variety

of generative systems. Finally, column four suggests that the system has provisions

for keeping track of combinations of simpler types at each level.

One more distinction is necessary. For each item in the matrix, we recognize that

variations can deal with relative or absolute values or, stated differently, with the

locus or the measure of a primitive. Depending on the kind of artifact being designed,

this distinction may apply to spatial relations (hence to topology vs. geometry or

topometry), to temporal relations (thus to chronology vs. chronometry), and finally to

relations of enerav (and thus to energy loci, such as equilibrium vs. energy measures,

such as particular input values to a circuit).

The four broad categories that constitute the designata help ensure completeness; for

each item in the matrix, however, we expect that the initial entries will be domain-

dependent, at least initially. It is our intention that the organization of the system

encourage cross-disciplinary interactions, of course, and thus no other

archetypes is attempted.

In terms of implementation this layer is built of fairly standard software

partitioning of

modules,

such as parametric solid modelers (PADL-2), object-oriented page description

languages, etc., to which the DM acts as a front-end.

4.4 IPs learning

An important implementation concept is that of ‘overlay/underlay’, understood as the

extraction/generation of new patterns from old ones through operations of comparison

and distinction, addition/deletion, elaboration. These take place through the association

of a ‘vector-set ' (as defined in 4.1.4) with each diagram. This set of vectors

provides control information to a neural net layer. Through initial training and

subsequent learning, the network develops the ability to associate particular IPs with

specific tasks, while general tasks are propagated throughout the entire network.

An IP receiving inputs that refer to its specialized knowledge does not distribute the -

information further along the same level, but rather to a lower level, the parametric

variation /resolution level. In this intermediate level, neural nets are used to vary

related components of the design while ensuring that corresponding dimensions and

attributes do not conflict.

5. Functioning

The activity of the Design Machine is based on the parametric interrelation of

interactive diagrams and the manipulation of underlying ‘design genes‘. Diagrams as

well as strips function parametrically to control the type layer. Let us explain some

details.

14

5.1. ‘Design Gene’ coding strip

In order to explain this mechanism, let us examine the following example. The

decomposition of an object will usually yield a structure of abstract types (as shown

below).

I top I I
nib

I

bP flow
mechanism

design gene strip i design gene strip i+l

- - - - - - - - - -----------._..I--__--- 1-_.------_
nauai net

underlying parameterized underlying parameterized
archetypes archetypes

The archetypal constructs that form the branches of this tree are parameterized and

placed in the systems initial knowledge base, with provisions for modification,

reparameterization, addition, deletion, and so on. Each such abstract type is

controlled by a ‘gene’ strip of data, which we call a ‘design gene’. The design gene

strip specifies which dimensions can be modified and contains the particular values

that determine each instance of this type. New types can be invented and

parameterized by the designer, and design gene strips can be spliced to create new

objects. The overall object is determined by a long strip of design genes created by

merging all the strips from the lower levels.

15

if S’rm j b nil then

S’rmj+ rmi+l -> S’rm j + fm j+ 7

where D stands for diagram, S for design chromosome or ‘strip’, V for vector, and rm
for random mutation.

This formalism explains how the design evolves from diagrams to strips and how

changes in diagrams result in changes in the genetic strips.in each mode What is not

immediately evident is the influence of the vector set on the generation of alternative

design strips, and, correspondingly, diagrams. Vector sets are used here for

implementation of associative memory neural nets. Finally, random mutation follows

the genetic model. With the help of diagrams, we would like to offer additional

explanations of the modes defined above.

5.3. Simulation

The diagram submitted below exemplifies the functioning of the machine. Important

here is not the level of detail, but the structural suggestion.

17

Diagrams

Design Gene strips
send weights to neural
net

Input Layer

\
Hidden Layers

Neural Net

_l
Output Layer

Parametric Type Layer

As a global representation, this figure is meant to suggest how diagrams, strips, IPs

implemented as neural nets, and types together generate designs. Details concerning

the genetic strips, the way diagrams are applied as inputs into the IPs, and how types

are generated can be noticed.

Finally, the manner in which the constitution of IPs as neural networks is supported

is explained by the following discussion.

We have concentrated on the implementational platform upon which IPs will act. The

actual implementation of IPs follows rather closely from the neural network model,

that activities such as specialization and delegation can be accomplished simply by

training separate neural modules to make particular associations. Particular design

team interactions (modeled as input vector values) directly require particular

in

connections (‘knows’ links and ‘needs’ links, for instance, modeled as the resulting

neural output values). However, many problems remain.

The weighted inputs and outputs and the nonlinearity, as well as the network topology

involving feedback and the possibility to employ various rules by which weights are

adjusted (i.e., by which learning, self-organization, self-adaptation occur) require

further clarification. We are evaluating which specific models of networks are more

appropriate for the type of intelligence characteristic of design. We are also

evaluating the resulting characteristics of the IPs network during training, which we

see as equivalent to a transfer of experience. And we know that the massively

parallel model of the IPs network in the Design Machine presupposes algorithms

different from those that we were initially prepared to implement. As of this writing,

we have not come up with reasonable answers to such questions.

References

1. Brown D.C. and Chandrasekaran, B. (1985): Expert Systems for a class of

mechanical design activity, ” in Knowledge Engineering in Computer-Aided Design,

Proceedings of the IFIP WG 5.2 Working Conference 7984 (Budapest), Gero J.S. (ed.),

North-Holland, Amsterdam, pp. 259-290.

2. Dawkins, Richard (1987): The Blind Watchmaker. Why the evidence of evolution

reveals a universe without design. W. W. Norton & Co., New York/London.

3. Feldman, J.A., Fanty, M.A., Goddard, N. H. (1988): “Computing with Structured

Neural Networks,” in Computer 21(3), pp. 91-103.

3. Mitchell, J.W., Liggett, R.S., Kvan, T. (1987): The Art of Computer Graphics

Programming. Van Nostrand Rinehold Co., New York.

4. Nadin, M., Novak, M. (1987): “MIND: A Design Machine. Conceptual framework,”

in

lntelligent CAD Systems I, Theoretical and Methodological Aspects. P.J.W. ten Hagen

and T. Tomiyama (eds.), Springer-Verlag, Berlin, pp. 146-170.

19

