CHAPTER 2

Interface Design and Evaluation—
Semiotic Implications

Mihai Nadin
The Ohio State University

Knowledge and experience from several disciplines (psychology,
sociology, communication theory, graphic design, and linguistics,
among others) are used, or should be considered, in this still new
field of human activity identified as interface design. The implicit
acknowledgement of the interdisciplinary nature of interface design
is symptomatic for the ability to differentiate between general and
specific requirements peculiar to the use of computers by various
users, as well as for understanding the need to translate this dif-
ferentiation in a design appropriate to the functions desired. After
an expensive and prolonged trial and error phase, researchers and
industry indeed acquired a more appropriate apprehension of the
complex nature of interface design and of procedures to evaluate
it (before and after implementation on computers).

WHY SEMIOTICS? WHAT KIND OF SEMIOTICS?

The input from various specialized fields of knowledge made possible
rapid but partial progress of interface design. While we know how
to cope with complexity in particular situations, we do not know
yet how to assemble successful specialized interfaces in a system
which can be approached by the user at a higher level than that
of each component. The ideal towards which the field is moving—
emulation of human communication, with special emphasis on in-
teractive natural language user interface—requires not only the use
of paradigms and empirical findings from the various fields dealing
with different aspects of human being and its social existence, but
also an integrative methodology. Interdisciplinarity and integration

45

46 NADIN

should go together. This integrative methodology can be seen as a
bridge between all the disciplines from which interface design has
borrowed concepts and findings, as well as between them and
computer science, whose spectacular progress made the design of
interface a rather critical element of the progress of computer tech-
nology and its applications. Semiotics, a relatively new discipline,
built on an impressive history of interest in its object and method,
provides the bridge mentioned above.

Semiotics, the general theory and practice of signs, studies every-
thing that is interpreted by human beings as a sign, and defines
the circumstances under which interpreting something as a sign
allows for its better understanding, or for an improved use of it.

People communicate among themselves, or, to use the word
«communicate” loosely, with machines, using signs, some of which
belong to the stabilized system of so-called natural language, others
to the shared conventions of gestures, sounds, colors, or synthetic
languages. People learn available sign systems and generate new
signs for various purposes. Any type of knowledge is shared by
means of language (the most complex sign system we know) com-
plemented by specialized signs such as those found in mathematics,
logical formalism, diagrammatic representations, and in musical or
engineering notation. Scientific and speculative theories, as well as
art works, are similarly expressed. Whether people regard computers
as mere sophisticated tools or as machines embodying a certain
degree of human intelligence (in hardware and the programs driving
it), they agree that, in order to use them effectively, human computer
interaction should be provided which does justice to the user and
takes advantage of the computer’s potential. Everything supporting
this interaction makes up the entity called interface.

This interaction is not physical, as with tools designed and used
before computers, but symbolic. That is, it takes place through the
intermediary of shared representations, i.e., signs of intended actions,
or of feedback signs designed for specific purposes. Accordingly, the
underlying thesis of this chapter is that, since the user interacts
with computers by means of signs, the design of interfaces .can
advance by applying the principles and empirical findings of se-

miotics. The reason for a semiotic approach lies in the very nature-

of interface design; therefore, requirements intrinsic to the subject
should guide in identifying what kind of semiotics can be useful,
as well as what can be expected from such an endeavor. Let us
first identify the appropriate semiotic framework.

In order to apply semiotics, we have to adopt one of the many

g 2] I| b

INTERFACE DESIGN AND EVALUATION 47

definitions of the sign which have been advanced. Known definitions
fall into two categories:

1. Pertinent to natural language. A sign is adopted as a paradigm
with the understanding that every other sign is structurally equiv-
alent. The Swiss linguist Ferdinand de Saussure advanced the def-
inition of sign as the unity between a signifier (the actual sign
embodied in material form, such as words or shapes) and the signified
(what the sign is supposed to mean). Artificial intelligence research-
ers are quite comfortable with this model.

2. Pertinent to local structure. Each type of sign and each sign
operation can be described in a logical system. The American sci-
entist and logician Charles S. Peirce (1839-1914), and pioneer of the
computer (cf. Ketner, 1984), advanced - the definition of sign as
“something that stands to someone for something in some respect
or capacity” (Peirce, 1932, p. 135).

Arguments in favor of one or the other definition can be produced,
but, since computers are logical machines, a logical conception of
the sign and its functioning in different contexts is more appropriate
to the subject. Design in general, and interface design in particular,
are not reducible to the model of natural language (or any other
sign system). On the basis of Peirce’s definition, this diagramatic
representation (not the only one possible) can serve as an operational

model.
Figure 1 should be read as saying that only the unity between

Sign S = S(O,R,])

R Representamen: that which represents

Representamen

Object: that what is represented

Sign

o I Interpretant: the process of interpretation

Object Interpretant

Figure 1. Sign definition in Peirce’s semiotic.

48 NADIN

the three components represent a sign, i.e., that signs are identified
as such only through their representation, and that, where we
interpret a sign, we become part of it for the time of that inter-
pretation. Let me explain this through an example. Icons in the
user interface paradigm are representamina. Like the icon of the
file, calculator, or clipboard, every other icon represents an object
with which the user is familiar from/previous experience. The
representamen of the clipboard (the drawing resembling the object
clipboard that we use in school, in the office, or on other occasions)
is interpreted by the user as being the computer equivalent of a
stationary item. Only when the user establishes the relation between
the drawing that represents the clipboard (representamen}, the phys-
ical item clipboard (object), and the understanding of the function
of the computer-simulated clipboard (interpretant) can we speak of
constituting a sign.

The sign can be constituted according to the intention of its
designer, or quite independently of it. Design of icons as part of
interface design requires that we understand under which circum-
stances the intended or accidental user will correctly constitute the
sign, i.e., interpret it according to a desired intention. Once the kind
of semiotics suitable for better interface design is identified, we
know what to:expect from its application. Prescriptive tools will
become available. Such tools help designers avoid errors when a
given activity is to be modelled in a user interface supporting the
most efficient interaction between computers and users. The basic
prescriptive rules which semiotics provides refer to the coherence
of the repertory of signs used, as well as to the consistency of sign
operations applied to the repertory chosen. Second, semiotics offers
tools for quantitative and qualitative evaluation through the basic
semiotic principles of appropriateness of representation and stability
of the dynamic sign system. The vocabulary of semiotics is less
important than the awareness of how people constitute and interpret
signs and use them as tools for new developments. As a metadis-
cipline describing signs, in particular language, by using language
and other signs to constitute its own corpus of knowledge, semiotics
is less a descriptive theory and more a methodology for improved
interpretation and evaluation of how people communicate, represent
things, express themselves, and constitute new models and theories.
For this reason, it is necessary to explain how semiotics, within the
adopted definition of the sign, deals with such activities. Once these
explanations are provided, examples will be introduced.

SIGN AND CONTEXT

The functioning of the sign in the context it was constituted in (in
our case, on the screen of a computer using a well-defined visual
convention, i.e., resemblance between the representamen and the
object represented) is expressed through the concept of semiosis
(sign process). This describes how given signs preserve or change
their meaning, how the change of context affects their interpretation,
and how the three fundamental functions of signs are obtained (see
Figure 2).

1. If, when using a sign, the emphasis is on the relation between
the representamen and the object represented (which is the case of
icons in user interface, in the use of pictograms in airports, etc.),
we actually confine ourselves to the function of representation.

2. There are circumstances under which the emphasis is on the
formal qualities of the representamen, interpreted almost inde-
pendently of the relation to what it represents. This is the case
with artistic expression, sometimes pursued by overzealous interface
designers right up to the computer screen. (I remember the bee on
the initial Intran system, flying in a strange fog while the computer
was “resting.” The bee turned into a cursor once the system was
started, and the cursor into a hand once a graphic program was
chosen.)

Semiotics

Semiotics as science of representation

Semiotics as science of expression

®
%,
] . . .
% Semiotics as science of knowledge
Q,
=Y

knowledge

INTERFACE DESIGN AND EVALUATION 49

Figure 2. Sign functions.

oot e e Srop

50 NADIN

3. If the user of a sign integrates representation and expression,
and tries to derive from the sign specific or general knowledge of
the object, the cognitive function is accomplished. Computational
biology, astronomy “on the chip,” computational physics, linguistics,
etc. are examples in which a representation—let’s say the DNA
model—its expression (in computer graphics-adequate form), and
the theoretic explanation it makes possible constitute a new body
of knowledge.

Based on these concepts, we can further explain the semiotic
levels at which sign processes (semioses) take place, levels that are
undoubtedly familiar and important to those working in computer
science (see Figure 3).

Letters, characters, words, and commands are just examples of
representamina. They have a precise syntax which in turn supports
the semantics (as a necessary but not sufficient condition). Even
such words as “if,” “the,” “and,” or some artificially produced
sequences represent objects, i.e., concepts with a precise logical
meaning. Whether images, sequences of letters or numbers, time
sequences, touch sensitive areas, temperature sensitive sensors with
attached functions, etc.—all have a syntax, which can be prescribed
as rigidly as the system requires, on whose basis the intended
semantics is built and the expected pragmatics is obtained. The
relation between the semiotic levels is far more complicated than
the diagram shows; insofar as in dynamic situations there is an
interdependence between them, the borderline becomes fuzzy. This
semiotic distinction, successfully applied in formal logic and then
taken over in computer science terminology, is useful in defining
structures. Once such structures are designed (the desktop metaphor,
to be discussed later on, is an example), we have to modify /amend

Pragmatic

Syntax Semantic

Figure 2. Semiotic levels.

INTERFACE DESIGN AND EVALUATION 51

them by considering the dynamics of sign processes. No sign can
be considered independently of its relation(s) to other signs, be these
similar (such as words in a given language) or different (words,
images, sensory perceptions, etc.). The interdisciplinarity of semiotics
is a consequence of the fact that sign processes are heterogenous
by their condition, and that, in order to understand how different
kinds of signs constitute interpretable strings or configurations, we
have to acquaint ourselves with each different kind, as well as with
the principles governing human or machine interpretation of such
strings or configurations.

DESIGN AND SEMIOTICS

Design comes about in an environment traditionally called culture
(currently identified as artificial through a romantic distinction be-
tween natural and artificial) and acts as a bridge between scientific
and humanistic praxis. Along this line of thinking, Herbert Simon
(1982, p. xi) stated, “Engineering, medicine, business, architecture,
and painting are concerned not with how things are but how things
might be—in short, with design.” There is no human activity that
does not contain some design component. Quite a few attempts are
made to put together a unified design theory. The concept is very
broad, while the forms embodying design are becoming narrower
and narrower, i.e., more specialized. This is also the case with
interface design. But no matter how specialized design becomes,
there are certain common elements which make products remote
in function share design qualities socially identified as appropriate,
good, useful, aesthetic, efficient, etc. Due to the role of computers
in supporting and improving human activity, it becomes crucial to
identify means for improving design quality, and eventually to
develop computational design. Automatic programming is certainly
one step in this direction. Progress in the design of interface will
follow once we better understand the nature of design and the
specific elements of human-computer interaction.

One way to achieve this goal is to look at design principles as
semiotic principles—in other words, to consider design as an activity
through which designers structure systems of signs in such a way
as to make possible the achievement of human goals: communication
(as a form of social interaction), engineering (as a form of applied
technical rationality), business (as a form of shared efficiency), ar-
chitecture, art, education, etc. In the case of genetic engineering,
the DNA model became the basis for a new field of research and

52 NADIN

a new industry. The same can be said about computer science,
which has as its domain the processing of a precise type of sign—
the symbol—according to the rules of Boolean logic. Programming
languages are designed languages; programs are designed too. Com-
puters, with their designed architecture and operating systems which
specify the sequence and structure of data processing, reflect our
acquired knowledge of the human beings who conceive and produce
them. Haber and Myers (1982, p. 23) noted, *“Human beings have
their own architectures and operating systems that determine how
they process information.” The organizational principles of the hu-
man being as sign producer and sign interpreter, and the organi-
zational principles used in designing computers, should be carefully
considered when we design the entity/ies through which users will
interact with computers. Everything we know from semiotics about
how people devise, interpret, and use signs can and should be used
in the design of entities through which interaction will take place.
As already stated, this interaction takes place not at the level of
physical (or biological or chemical) reality, but through the inter-
mediary of sign sequences (letters, words, icons, programs, interrupt
messages, calls of routines, etc.). With our new tools, we no longer
interact directly—as with the hammer, the screwdriver, or the
plough—with whatever we wanted to change or use—but indirectly,
using the mediating function of commands, programs, and expert
systems. Accordingly, the breakdown of a tool is primarily a con-
ceptual problem (in a given social context) and not one of physical
relevance.

INTERFACE DESIGN: SCIENCE OR ART?

While it is true that the interaction between humans and tools
became fashionable in the “computer age,” the concept of interface
is actually a product of human culture (seen as an artifact envi-
ronment). It is in this respect that Simon (1982, chapter 1) regarded
“the artifact as interface” and “the environment as mold.” Design
of interface is not just concerned with users and computers, but
also with human-to-human relations, especially in the context in
which our relation to tools, human contact, and interinfluence be-
come more and more indirect, mediated through entities to a large
extent programmed. Signs fulfill the function of intermediary, go-
between, and medium. Some signs can be very precise: mathematical
formalism, instructions for booting/rebooting a system, E-mail ad-
dresses, passwords. Others are less critically defined: contents of

INTERFACE DESIGN AND EVALUATION 53

log-in/log-out files in time-sharing systems, names of passed pa-
rameters in complex programs, E-mail paths, the place a document
occupies on a multiwindowed screen. The designer of an interactive
editor has to look in both directions: to the architecture and operating
system of the computer and the “architecture” and “operating sys-
tem” of the user. The two are rather different. While, at the computer
end, the designer will assume uniformity and homogeneity (at least
for a line of products, and until the succession of improved versions
starts), at the user’s end there is no such thing as a general or
abstract user. This makes the designer’s task quite complex and
explains why the computer community is so frequently frustrated.

Schneider and Thomas (1983, pp. 252-253) pose two questions
that express the feeling of that community: (a) Why isn’t the design
of computer interfaces more like science? (b) Why can’t the people
who design interfaces be more like engineers? These concerns stem
from the recognition of the role interface design plays in the human
use of computers. In the past (of timesharing and expensive hard-
ware), interface, although important, was less critical. With computer
technology becoming cheaper and expanding to more segments of
society (especially in the personal computer environment), and in
view of the diversity of utilizations of this quasi-universal tool,
interface design issues (together with networking) acquire more
importance.

If a science of interface design for computers or any other kind
of machine is conceivable, then this science will have to integrate
in its body of knowledge semiotic concepts and experimental data
regarding the human use of signs. On the other hand, computer
scientists and engineers should have no problem in understanding
the nature of interface design as science and art; as information
engineering and design; as communication and expression. Despite
the diversity of signs and sign processes used in interfaces, these
all fulfill the basic function of intermediary between users and
computers. Their meaning is determined by what we actually do
with computers. The contingency of each mediation—its likelihood,
relative predictability, its dependency on and conditioning by other
factors—that is, the contingent ndture of each interface, is a reflex
of design’s dual nature as science (in respect to scientific principles
of design applied to computers) and art (in respect to a particular,
original way of designing). In suggesting attention to semiotics, I do
not intend to reduce everything to semiotics, but to point to un-
derlying processes taken for granted for a long time, but not yet
integrated in a methodology for improved design interface. The fact
that there is more than one answer to the question of efficient

54 NADIN

interface with a system seems to worry those inclined to accept
only one answer to an engineering problem. Such people forget that
programming, while a very rigorous activity, allows for the use of
creative algorithms and their creative interpretation. Two programs
for the same application can be as original and innovative as their
authors. The scientific nature of logic reflected in the scientific
nature of the computer, as well as the scientific foundation of
semiotics, implies the art of reasoning and allows for an art of
computing expressed in elegant, balanced, optimized codes. The late
recognition of the fact that computers are basically sign processing
devices (see “the concept of symbolic computation”), and not merely
number crunchers, was not just a matter of terminology. It made
possible progress in our design of computers and implementation
of understanding (intelligence) algorithms.

All that we understand or know, we know through the inter-
mediary of signs and in signs. (Gibsonians of all shades and nuances
will of course disagree.) And all that we apply from our knowledge
is semiotic in nature. This observation may seem banal. But for a
society still trying hard to explain that there is nothing in a computer
which was not previously put there by those who built it, wrote
programs for it, or stored data in it, it makes sense to clarify where
knowledge comes from and how it comes.

REPRESENTATION

At the beginning of the computer age, which means not only the
abacus, but also Babbage’s analytic engine or Peirce’s logic machine,
representation was kept very close to the Boolean logic which was
supposed to operate on the represented items. In truth, black and
white feats or similar simplified representations (in two-valued logic)
of the basic repertory of signs called “yes” and “no,” or “one” and
“zero,” sufficed. More was difficult to handle. Leibniz noticed so
much ahead of his time that a language of zeros and ones, while
very handy in view of its reduced repertory, was complicated, since
it entailed very complicated sign operations applied to the repertory.
He hoped that semiotics (which he anticipated) would come up with
precise rules for generating not only the equivalent of sentences
from natural language, but also mathematical formulae, music, as
well as universal ethical principles.

Today we use several layers (assemblers, compilers, interpreters)
and operating systems to coordinate the flux of activities that users
require as an intermediary between zeros and ones of machine

INTERFACE DESIGN AND EVALUATION 55

language and high level human reasoning involving the use of
language and other sign systems. In order to provide the user with
efficient means for reaching his goals in using a system, we try to
make it transparent to the user. Interface helps in this endeavor.
The specifications according to which they are designed determine
the degree of transparency assigned to particular groups of users.
Representation of objects, action, data, process status, etc. is a matter
of the relation between the representamen and what is represented
(the generic object in the sign definition from Figure 1). Represen-
tation, and the consequent interpretation of this representation, can
take three forms (see Figure 4).

Let us discuss the implications of choosing one of these funda-
mental modes of representation. Based on a relation of resemblance
between the object represented and the icomic representation, the
use of icons implies recognition, i.e., a shared environment. Users
familiar with the object represented have no difficulty in associating
the icon with some object they have used before. However, if they
have no prior experience with whatever is represented, if the ex-
perience is different from the one intended, or if the convention of
resemblance is not carried through uniformly, interpretation is af-
fected. When the Metaphor for User Interface Design was introduced
at the Xerox Palo Alto Research Center, the intention was “to make
computer systems accessible to many people and to make computer

Representation

R Anobjectcan be represented:

fconic iconically—representation based on
resemblance, likeness;

Indexic indexically—representation
causally influenced by the object,
mark of the object;

Symbolic symbolically—representation based
on convention

0] I
Figure 4. Kinds of representation.

prro S_

56 NADIN

systems do many more things for people” (cf. Goldberg & Robson,
1979, p. 157). The first goal demanded simplicity, and was later
achieved, to a certain degree, by using the simplest form of rep-
resentation, i.e., iconic. The second required complexity (of available
programs first of all). In order to find the optimal compromise,
designers of the system opted for filtering templates for implementing
software interfaces between various groups of users and a complex
computing system. Filtering templates make possible the display of
graphic representations. They are invisible layers which support the
iconic interface which was afterwards, with direct participation of
semiotics (the concept of icon), implemented in Xerox’s Star Work-
station (cf. L. Tesler, personal communication, Cupertino, December,
1983).

Among the indexical representations used in interface are account
number/name, passwords, and memory management (how the user
learns about available memory or memory limitations). In the UNIX
operating system, there are quite a few indexical signs. In the attempt
to implement an iconic version of UNIX, designers noticed the
difficulty in dealing with such representations. However, indexical
signs proved very important for identifying “break-ins.”” The entire
computer security issue brought the topic of indexical signs into
the design of interfaces, supposed to be friendly to the legitimate
user and impenetrable to information thieves. The symbolic level
of representation makes use of high level conventions, such as those
of natural language and of logical or mathematical formalism.

The need to establish a coherent level of representation and to
avoid changing the convention emerges as a precise normative
requirement to be observed when interfaces are designed and eval-
uated. What this means in concrete terms will be explained when
examples are given of actual interfaces and work done.

CONCEPTUAL AND PERSONAL MODEL

Based on these elements, I shall introduce a generalized concept of
interface and then apply it to a computer system on which I worked
as consultant for the Apple Computer Corporation. First, I should
point out that interface, no matter what kind, specifies the optimal
set of signs for the interaction between two entities, be they animate
or inanimate. In a limited sense, user interface specifies the action
the user is supposed to take in order to access different parts of a
system according to the design of the conceptual model which is
the basis of that particular system (see Figure 5).

INTERFACE DESIGN AND EVALUATION 57

In the case of computers, Meyrowitz and van Dam (1982, p. 323)
ascertained that user interface, together with the conceptual model,
constitute the interactive editor. According to this conception, user
interface contains the input devices, the output devices, and the
interaction language. In what follows, this view will be contradicted,
since I consider the interactive editor itself an interface. Moreover,
every point of contact between the computer and the user will be
integrated in the extended model of user interface, from product
design to service (support, documentation, tutorials, seminars, pack-
aging, etc.). What makes things a bit more complicated in comparison
to the most common social forms of interfacing through the inter-
mediary of natural language is that user interface is part of the
computer system. As we know, it participates in, and sometimes
supports, process interfacing among different components of the
system. Top level interaction with the user through the formal
programming language also falls in the sphere of user interface
activity.

In the spirit of accepted language theory (in particular, generative
grammars), language can be understood as a generative mechanism
given as a grammar to be applied to a vocabulary (or, more generally,
a repertory) and rules to generate valid expressions. The personal
user model, reflecting the way users perceive interface under given
operating conditions, is an interpretation of the interface sequence
of operations. It is formed in a long process which sometimes starts
with tutorials, at other times with reading instruction manuals, and
not infrequently with simply trying commands or operations based

System interf;::e; user/market

Figure 5. Constitutive elements of the interface sign.

58 NADIN

on prior experience while looking for some online documentation
(help facility, error messages, or menus, in the case of menu driven
machines). In each of these cases, the user tends to extend what
he or she already knows. In doing so, his or her semiotic competence
suggests two assumptions:

1. uniformity of rules
2. consistency of the representation convention adopted.

These two assumptions are actually semiotic principles derived
from empirical observations regarding the way people with a certain
competence act when faced with new sign systems or with new
languages. Although operationally different, the conceptual model—
obviously anticipating the user model—has to integrate these two
requirements. In order to give an idea of how semiotic methodology
can be applied, I shall concentrate on a common example: the so-
called office system computer. The premise for considering a com-
puter’s interface from a semiotic viewpoint is that it represents a
complex sign system; specifically, it represents a system we interpret
as an emulation of the office.

Representamen
That which represents
User interface

Sign = (O,R,I)
A considered computer

Object Interpretant
That which is represented The conditions for use and evaluation
Type of computer system (functions, contexts, values)
Examples: Office system
CAD system

Videotex system, etc.

Figure 6. Applied sign definition to computer.

INTERFACE DESIGN AND EVALUATION 59

Figure 6 helps in defining the elements of the basic semiotic
entity, i.e., the sign, as constituted in the computer context. | have
already mentioned that user interface makes transparent in three
ways (iconic, indexic, symbolic Tépresentation) whatever can bhe
accomplished with the help of computers. The syntax of user in-
terface, although usually influenced by the semantics (the appli-
cations available), is independent of the program’s syntax. This is
not the case with the applications, although the user does not
necessarily know this. Sometimes we notice that interface designers
impose syntactic rules which make more sense to programmers than
to users. Dennis Wixon, in his helpful comments to a previous
version of this chapter, presented the opposite position, according
to which the issue is to “decrease the distance between it [computer]
and its users, much as the hammer is an extension of the arm.” If
computers were only such extensions, the use of semiotic concepts

to be done in a way which will not make them servants of the
machine. If, in the process of constituting the- unity inter-
face—app]ications—conditions for use and evaluation represented by
the diagram in Figure 6, one or the other of the elements imposes
requirements affecting their reciprocal relation (e.g., interfaces not

Videotex applications Provide an example of this situation. Despite
all the investment made in the United States, videotex did not
succeed because, among other reasons, the user interface did not
adequately represent the applications (electronic banking, shopping,
mail, travel schedules, etc.) and the conditions for use (via telephone.
lines) made it cumbersome.

Some examples of well-constituted semiotic entities nevertheless
prevail in the computer market. Without going into detail, I would

60 NADIN

working under different conditions and needing to accomplish work
often not anticipated by system and interface designers, or not
entirely understood by them.

LISA—AN ABANDONED OFFICE SYSTEM

The constitutive elements of the office system for which I did
consulting work (together with graphic designer Thomas Ockerse)
were the desktop metaphor (representamen using iconic represen-
tation of applications appropriate to an office system), conditions for
use as defined by office work requirements in the context of im-
proved productivity, augmented communication, and integrated ac-
tivity. The pragmatics results not only from the functions made
available (word processing, ledger, listing, etc.), but also from the
recognized need to integrate them. Everything used in this repre-
sentation of the office constitutes part of a repertory, while the rules
of usage, as applied in the process of interfacing, define the grammar
of the interface language. Once the product becomes available, the
final result that the designer and user look for is not the value of
true or false, as in formal logic, but meaning,
This requires one more definition of semiotics: Semiotics is the
logic of meaning. As such, it approaches the logical laws of sign
processes conveying a certain meaning to an intended interpretant
(i.e., the process of interpretation in which various users become
involved, the use of the system). In order to design the interface
(representamen = that which represents), the low level protocol has
to be established. We came to the conclusion that an office is the
unity of the environment, tools, supplies, and activities which make
possible the pragmatics defining the specifics of each particular office.
There is no such thing as a universal office. There are different
types of offices, and when a computer is identified as an office
system (IBM's, DEC’s, Wang’s), this identification opens the door to
interpretation and different uses. The list to follow, a low level
protocol description, presents an office as our society considers one
to be. Once a decision for specialization (insurance, financial plan-
ning, law practice, medical, etc.) is made, under the assumption
that the production of a specialized computer or the implementation
of a specialized software package is justified, the description becomes
more specific. In other contexts (the European market, Far Eastern
office activity, etc.), the low level protocol will look slightly different
(see Figure 7).
The semiotic condition of metaphors is that of expressive ab-

INTERFACE DESIGN AND EVALUATION 61

ENVIRONMENT ACTIVITIES TOOLS SUPPLIES
physical space typing furniture pencils
- architectural editing - desk(s) - black
- interior dictating - chair(s) ~ colored
space filled w. formatting - shelving pens/markers
objects (rugs, accounting - storage cab. - black
furniture, plants, payrolling - supply cab. - gray
pictures, tools . . .) - employees - file cabinets - colors
lighting - sales - safe erasers
- natural - expenses machines liquid paper
- artificial calculating - copy ue
human interactivity financial modeling - dictation paper
- w. personnel cutting/pasting - shredding - plain
- w. clients representing - binding - graph
communication planning ~ typewriter - colored
environment tracking - calculator - tracing
controlled environment - inventory - paper cutter carbon paper
- w. specified areas - schedules stapler acetate sheets
- w. rules inside analyzing scissors spread/ledger
outside preparing tasks letter opener sheets
- w. rules for developing tasks rulers stationery
legal entity meeting straight edge invoice forms
public environ- | presenting protractor billing forms
i ment | serving desk lamps memo pads
informing clock telephone
communicating telephone pads
answering questions | trays labels.
telephoning - in/out stickers
advising - letters file folders
controlling (quality) | waste basket binders/cases
filing tape dispenser tape cassettes
retrieving file organizer rubber bands
listing desk organizer clips/paper
reporting clipboard ; clips
centralizing rolodex (open card |tapes (clear/
keeping records files) masking)
inventorizing business card file string
recording hole puncher
performing light table
cheating magnifying glass
hiding postage scale
working in private |desk pad/blotter
pretending calendar
entertaining telephone books
living dictionaries
secretary’s
handbook
thesaurus
copy stand
numbering/date
stamp
rubber stamps
stamp pads/stamp
ink
decorative-pictures
objects
- plants
- rugs

Figure 7. The office environment.

62 NADIN

stractions. They are generated, for poetry or science, by way of
selecting characteristics according to an intention which the met-
aphor makes explicit. A desktop as such is not a metaphor, but a
working surface. The desktop becomes a metaphor once it is selected
to represent the office environment. Behind the desktop metaphor,
there is actually another layer which implements a more general
model, the layer of windows, a filtering template used for displaying
graphic representations (text or pictograms, diagrams, etc.). Windows
are components of the repertory and can vary in size. The possibility
of arbitrarily overlapping windows facilitates the analogy of paper
on an office desk. Obviously, not every system is designed to support
covered windows (tiled window managers do not); i.e., the desktop
metaphor, as any other metaphor, requires that the designer of an
interface which implements desktop conventions use a system that
can support it well. Raster display is a necessary condition.

The Lisa machine, which Apple developed using or adapting
previous results obtained by Xerox, was supposed to fulfill the goals
of user friendliness (“accessible to many people”) and complexity
(“do more things for people”) by providing a very transparent user
interface and an integrated, multitasking computing environment.
The advantages of implementing Alan Kay’s covered window model
(accommodating several large displays which could not fit together
side by side, making better use of screen, maintaining familiarity
with the convention of overlapping paper on a desk) were to be
augmented by a mode-free environment. Since a graphics interface
was considered, the list in Figure 7 was soon turned into a visual
representation of the office.

SYNTAX OF INTERACTION

After defining interface as representamen and specifying its elements
with the aid of low level protocol description, and after defining
the type of representation (iconic, indexical, or symbolic), we have
to relate these to the computing environment, to the integration
language. Larry Tesler (1981) explained what this means from the
perspective of the user we considered: “How do I do this?” “How
do I get out of this mode?” as opposed to seeing on the screen what
is available, choosing with a pointing device (which moves a cursor
wherever the cursor is needed), and switching from one application
to another. Since this issue is critical for interface design, let me
explain it briefly and give an example,

User interface consists of input and output devices and interaction

INTERFACE DESIGN AND EVALUATION 63

language. The latter consists of a repertory (constitutive elements
which can be put together to form meaningful commands) and the
equivalent of a grammar (rules to be applied). We can input character
strings, commands, and coordinates. We can receive the same as
output, as well as formatted text or data (or both). The syntax of
interaction languages can be prefix, postfix, or infix. Once we adopt
a conceptual model for the user interface, we implicitly adopt an
adequate syntax for the interaction language. The two aspects are
interrelated. Until the Palo Alto Research Center unveiled its then
original iconic interface (the Alto R station) and the Smalltalk en-
vironment (Thacker, McCraight, Lampson, Spronll, & Boggs 1979;
Tesler, 1981), the main type of command was the prefix. Basically,
a prefix syntax command specifies first the verb (operation) and
then the object of the operation (example: edit; file to be edited).
The postfix syntax command does just the opposite, allowing first
for the selection of the object (file) and then for the desired operation
(append). It requires a subject-oriented interface language; i.e., it
makes possible a visual language, i.e., a graphics interface. The infix
command implies the existence of several operands, each action
being virtually connected to such operands.

Let us consider the way the world of typography is emulated on
computer-driven typesetters as an example (the Mergenthaler OM-
NITECH 2000 to be precise) that points to the inherent constraints
of a prefix system (see Figure 8).

The pragmatics of the emulated world, on which the culture of
the printed medium relies quite extensively, determined the func-
tions of the new machine and consequently its interface: What used
to be the composing stick was turned into a sequence defining the
font (@T#sp), size (WMS##sp), lead (ML#sp), and measure EM#s#sp (in
picas and points). The text to be typeset immediately follows @M##sp,
the highlighted specifications; hardware (the stick) becomes a soft-
ware specification. Pagination requires a formatting command, quite
opaque to the user (defining page area, zero position, negative area,
etc.). Obviously, the change from the technology of linotype (hot
type) and letterpress to the technology and interface of the digital
typesetter is impressive. Desktop publishing, which was supposed
to become a Lisa function, shows not only how technology has
changed, but also how changes in interface (from the abovemen-
tioned awkward prefix commands on the Mergenthaler to the more
direct specification of today’s systems) facilitated access to more
complex computing for more people.

R Registered trademark, Xerox, Inc.

64 NADIN

A0F BT {8FY LI Information access -

Figure 8. Computer emulation of typographic environment.

v

INTERFACE DESIGN AND EVALUATION 65

The infix command implies the existence of several operands
that are established through user interface design. Since the se-
quentiality of computer string processing is a structural given—and
natural language is sequential—the first, and still most common,
design interfaces use the sequential paradigm. The relation between
the user and the computer is established during the typing in of
strings (text or abbreviations) for names (commands) and for op-
erands, sometimes as close to natural language as possible, at other
times according to other conventions. Intuitively following the se-
miotic principle of feedback, the designers of such interfaces made
sure that the commands are echoed on the output device (screen,
in this case) before or after being processed by the editor. The
interface design becomes more and more critical when online ac-
tivities are performed. The old, hot metal typesetter was an online
device. Each key command ended up in the mechanical selection
of the appropriate mold; the hot metal was poured in the mold and
the result was a line. Norpak’s IPS-2 system (which supports a
Telidon alphageometric system) duplicates the real world of design
and typography, moving beyond the infix structure (to a mixed
environment in which infix and postfix commands coexist, with a
drawing tablet that allows for the actions connected to some of the
available operands). Interface preserved some basic tools: compass,
pantograph, ruler, triangle. But the end products (image on an editing
screen as opposed to newspapers at a delivery station) are obviously
different. There is also a limit to the emulation, clearly illustrated
in the way people interface to a newspaper as opposed to the
selection pad of a teletext-videotex-television device.

Up to this point, we have examined different ways a strategy of
imitation is pursued and interface designed to make the imitation
clear to the user. The limitation imposed by the postfix syntax on
the interface adopted for Lisa can be partially overcome by the
introduction of function keys, the use of macros, better emulation
of natural language, design of “intelligent” editors, etc. The postfix
command opened the way for multiple choice of strings and/or
visual images (graphics interface which is mainly iconic). But, to
date, less has been made known about the semiotic characteristics
and limitations of such interfaces. In the process of semiotic eval-
uation of the postfix syntax and its use, conceptual limitations as
well as experimental findings were considered. Adopting the postfix
syntax was only one more step in the direction of better under-
standing the perspectives for improving interface over the course
of time. For instance, frequently the basic distinction object-action
(reflecting the noun-verb distinction in natural language) is not

i

0 ““ﬁz? oo

66 NADIN

clear-cut. People also tend to transform nouns into verbs (and vice
versa). Moreover, and for reasons implicit in the semiotic structure
of such interface, selection and response times sometimes increase
over the time of operation itself (opening or closing a file is the
most obvious example). In what follows, particular aspects of the
office system interface design will be more closely considered.

The following model was used in evaluating the interface spec-
ifications (see Figure 9):

Since the desktop metaphor and the iconic representation were
chosen for the object (of action), the specification of the action had
to use a graphic form, too, but a different type. The user should
not be put in the confusing situation of an undifferentiated repre-
sentation of objects and actions. Because actions are difficult to
represent in static pictograms (they can be represented in animated
sequences), representations of actions were not iconic, but symbolic
(through words). These words are displayed in pop-up menus and
organized according to main categories corresponding to the state
of the machine (after booting, once the application was started,
before and after editing, etc.). Since window sizes can be changed
and both characters and full bitmap graphic operations are supported,
the interface had to be designed so as to preserve the realism of
the convention. Once the window size is changed, the user sees
only a portion of the document and not a sized-up/down image.

Model of Interface Language
Interactive
Language
1
[
I
I file
print
storage tools edit
- layout page
profile clock arrange
diskette calculator etc.
folder clipboard
document stationery

Figure 9. Model of interface language.

INTERFACE DESIGN AND EVALUATION 67

Interface design requires semiotic consistency; i.e., it becomes a
matter of uniformly using whatever means of representation are
considered adequate.

Although every effort was made to ensure consistency, later on,
during an evaluation in which design principles were applied to
see how successful the designer had been, it became evident that
the clear-cut conceptual distinction between actions and objects was
really quite fuzzy. Instead of documenting the successful parts—in
the meantime acknowledged by their widespread use in interfaces
designed for other systems—I prefer to discuss the critical aspects
and what means semiotics provides for evaluation and redesign.

The type of representation chosen (iconic, indexical, or symbolic)
influences the user’s interpretation. The following representation of
the Lisa calculator visualizes this idea (see Figure 10).

Recognizing that the squares on an icon called calculator are
“real” buttons which have to be “pressed” (not on the screen, but

«@~ pictographic <3~ concrete abstract -9 Type
of Representation

e FricE oy
= 1]
EEE mE
- e
) @ feonic

IX
SINN
N

+
|
+
|
e

xX
s
X
o
b4

.| |

J = ="

J

- more optimal —————-— more—»
Amount of Interpretation

Figure 10. The relation between representation and interpretation.

hal

SYyr

68 NADIN

the numbers displayed are a kind of convention-over-convention.
The user is confronted with a real calculator and a representation
(iconic) of a pocket calculator. This is a difficult semantic situation,
similar to the one we face if some of our words were at the same
time the objects they denote! Figure 10 presents the visual analysis
a designer should go through to evaluate options that might prove
better than the initial one.

The easiest and most direct interpretation is the one resulting
from information sufficient to facilitate recognition. After semiotic
inconsistency, the second issue is whether icons should be presented
with the names of the items they represent. Recognition memory
is better for iconic representation. However, the recognition of tasks,
such as how to use the calculator, seems to imply that dual coding
(images and words) is sometimes confusing, because users will
typically wonder why they need a label underneath an image they
recognize, Is there something they might not understand?

Computers such as Xerox Star, Intran, and later Macintosh added
the interactive editor formatter to the postfix command that is part
of the interface language: “What you see is what you get.” While
this is a welcome quality, soon to be adopted by other computer
designers, it has the drawback which Brian Kernighan identified as
“What you see is all you've got.” In the opinion of several interface
designers, it is uninformative and gives no clues to what influences
a certain format, why some changes are not possible, and why there
is no consistency between formatting capabilities or between the
different applications used. The filtering templates used in such an
interactive editor formatter are as important as the input messages
in the prefix commands. On most available systems, the semantics
of the templates is confusing and not consistent with the visual
representation of the objects, locations, or the pop-up menus of
actions (based on a Computing environment such as Smalltalk and
supported by a pointing device connected to the cursor or current

position independent manager). Another limitation affecting the use
of visual language results from the aliasing condition of raster
graphics (which supports the window model). It can be compensated
for either by increasing the density of pixels (which results in the
need for computer memory and increased response time) or by using
multiple bits per pixel (grey-scale displays). This is not only a
hardware issue. The higher the quality of images, the better the

INTERFACE DESIGN AND EVALUATION 69

possibilities to generate a visual language for the interface and to
support high quality applications.

HUMAN-COMPUTER COMMUNICATION

An office is not a collection of files, typewriters, calculators, etc.
That is, it is not a collection of hardware but an environment where
communication (exchange of documents, for example, storage and
retrieval of data, planning, etc.) is necessary, and interconnection
should be possible. This explains why office systems successful in
supporting individual office work but not communication have not
made it in the market. As far as the semiotic evaluation of the Lisa
is concerned, it failed on the market due to severe communication
limitations, among other reasons. Apple was aware of some of the
limitations. Produced under market pressure and unveiled before
the product was actually finished, from the perspective of technology
and interface, Lisa claimed an integrated environment within which
communication among applications was possible. From the begin-
ning, this communication was limited and difficult to accomplish.
The user learned from the manuals that information could not be
switched between all the programs, and that sometimes only one-
way communication was possible. This was confusing, to say the
least. What was worse was the reality that the system performed
below these specifications. When trying to use the clipboard as a
communication go-between, the user frequently experienced crashes
which destroyed a file. Communication with the outside world was
possible through the LisaTerminal (sic!) within which editing pos-
sibilities were kept to a minimum. The emulation of terminals used
for electronic mail (especially DEC) was considered sufficient. Im-
plementation of this emulating function was primitive. Local Area
Networking was not provided; consequently, while data was pro-
cessed electronically, it had to be exchanged through hard copy
obtained on a rather slow printer. Against the background of these
communication limitations (to which incompatibility with other
systems should be added), the price tag of $10,000.00 came as a
further shock. Nevertheless, I claim that it was not the price but
the communication limitations that undermined the product. Later
on, when the price was slashed and communication facilities only
slightly improved, Lisa—which did introduce very important com-
puting concepts—did not make a recovery in the market.

At this point, it is useful to suggest that more attention be paid
to the semiotics of communication pertinent to computer interface.

70 NADIN

There are people who question the subject. “Do people want or
need to communicate with computers any more than they want or
need to communicate with a typewriter?” is a question Dennis
Wixon obliged me to consider. Actually, there is no such thing as
man-machine communication; this is a way of speaking, a way of
anthropomorphizing machines. Communication is the semiotic ac-
tivity that brings user and designer together by the intermediary of
the language(s) they use. Once the user accepts a language, he or
she will apply it according to the rules the designer embedded in
the interface, and their communication, mediated by a certain ma-
chine, will take place. The Ppoint is not that the user is at the mercy
of the designer. After all, aren’t we all at the mercy of our parents,
who brought us to life in a language we could not choose? Rather,
the designer and user, as parts of a given culture, share established
conventions and participate in the establishment of new sign sys-
tems, if such become necessary. Programming languages are just
such systems, i.e., languages which support precise functional ac-
tivities and make possible new tools, which are cognitive in nature.
The field of human factors in computer systems, “an unruly mixture
of theoretical issues and practical problems” (Norman, 1983, p. 1),
developed as a result of the difficulties computer scientists and
engineers face when considering the relation between the systems
they build and their potential users. Psychological concepts were
brought into the picture first, and previous observations on the
interaction between humans and various tools and machines were
applied, not unsuccessfully, to a technology very different from any
previous one. What was less considered was the fact that signs and
sign processing represent the common underlying principle both of
human interaction with computers and of the computer, “a member
of an important family of artifacts called symbol systems” (Simon,
1982, p. 28). Since the technology upon and for which we build
interfaces changes very rapidly (some that we are aware of, some
to be discovered), semiotic principles provide a foundation for a
more comprehensive specification of interface design (user and pro-

cess interfaces), and for the evaluation of interfaces currently in
use.

INTERPRETATION OF INTERFACE

We know that signs are constituted of structural components in a
limited number of ways. For instance, major structural components

INTERFACE DESIGN AND EVALUATION 71

of visual signs are shape, contour, color, and texture. If an object
is distinct enough, shape alone may be sufficient for recognition (an
observation that interface designers using visual representations
sometimes apply). I shall exemplify this by referring again to the
calculator (see Figure 11).

Pictographic representations are very concrete, almost so concrete
that, if the context changes and the user is presented with a different
pictogram (let’s say one of the solar battery calculator), he or she
will have difficulties in “using” the sign. The semiotic level is
reached when the conventionality of the sign becomes evident.
(Convention here means as convened, agreed upon, and accordingly
shared in a given social context, in a culture.) Once the convention
is recognized, the next step in interpretation is associating sign and
function. Only at this moment does the user integrate the component
of an interface’s repertory in what the designer intends the language
to become. Obviously, understanding what an icon represents, as
opposed to what it pictures, is essential for designing user interface
language. Once this is understood and consistently applied, we can
decide upon one type of interface or another, or upon a mixture
of representations. Regardless of our choice, what is important is
understanding the different sign processes (different “grammars”)
that characterize the three fundamental types of representation.
Words can be used as well; and at the extreme of the symbolic
representation, one can add the word CALCULATOR, or some
abbreviation.

Evolution of a Sign Representation

Symbols may evolve from pictographic representations.
As the symbol becomes more abstract,
it also becomes more recognizable.

[z]
0000 |;oog X_ X
aoba ooo
0Dog T i
0oo ooo0 11 ==
00 £aa 1

pictographic —3» iconic sign —» symbolic sign

representation

Figure 11. Evolution of a sign representation.

72 NADIN

MACINTOSH (OR: REINVENTING LISA
IN THE MAC ENVIRONMENT)

The initial step in designing a user interface is to determine the
operations and the entities on which operations will be performed.
If template filters should be used, the identification must consider
object/location as opposed to action/structure. Editing filters are in
fact devices that perform the basic semiotic operations (substitution,
insertion, omission) according to specifications from the user or the
system. The same holds true for viewing filters (used to specify
areas of a document to be viewed and to generate viewing buffers).
The editing and viewing filters are semiotically equivalent; func-
tionally, they are sometimes identical (screen editors), disjoint, par-
tially overlapping, or properly contained in one another. This is
part of the pragmatics of the interface, and necessarily relies on
hardware specifications. From a semiotic perspective, which em-
phasizes the unity between function (interpretation, content, use),
syntax, and semantics, there is only one way to proceed in ap-
proaching interface: as part of the system, not as a delayed addition
to it. Despite its qualities, the Apple IIC (one among several possible
examples) shows what happens when an interface concept (the use
of the mouse) is adopted primarily for marketing purposes. The
same holds true for the Macintosh computer in its initial stage—a
product celebrated by quite a few but which, despite its qualities,
was considered a hybrid between an office system and a dignified
toy. Let us examine some of the reasons for this ambivalent eval-
uation. As with the phased-out Lisa, emulation was the semiotic
strategy used. One might argue that, for the sake of realism, a
certain overdesign of the interface (emulation of details) makes the
Macintosh’s very small screen (management of a reduced number
of pixels) seem continuously too busy.

Figure 12 exemplifies what kind of representation was adopted:
sometimes reminiscent of the tool (typewriter) whose functions the
computer can fulfill; at other times, new functions; and finally, icons
of pencils, brushes, and paint cans, or of forms already available.
More than one convention was implemented here, the quality of
the interface consisting of directness but not consistency. What also
surprises is the way tools are introduced under the cutesy name of
Goodies, a mixture of necessary and less necessary elements (see
Figure 13).

Moreover, the finder—a remarkable device used in a contradictory
way—almost turns into a hidden collection of toys. It is not that
computers—especially the PC category—should make users lose

INTERFACE DESIGN AND EVALUATION 73

L |

T & Fhe Searcn font_Stye

[T) [N ...}l—

oL EHPBOSrd L onnes corst e tes

The astentportant ralaINEAL: M Lhe Gues 1 1 TRy waiect and
| scace oy I ENERRRRIR v, x:emct o

| cositianing ‘re subject - ralationsria fo the object does nct permit s

alesTactary s2ed/subJect - the rprect re

SPaLi Bg reccrridersd 51 1S 0Int The relol:zash D telween vert 3t

Gbjetl talls Agxt 1 DPIQFL, AS $hg ax:s 2 al'jrment pessing thriage | |

Subject, «er. ang a3}act wiit be the *ocug o1 the Gigram. the

HPE'-:S ur

& File Edit Goodins- font “Fonltize Siula

w
| A

74 NADIN

& fie Edit Fonl Fomsize stgte
i = Grig =
!:. = FatBits MatPainl E
i s show Page
2 g AN | o Pattern
a Brush Shape
E'l Vi Brush Mirrors
o~ | introduction
F =[] Shiort Cuts
f
HO|=
Hole
Holef
i =3

mJ

Figure 13. The semiosis of Goodies.

their sense of humor, childishness, or ingenuity. Rather, it is a
question of evaluating options within a precisely defined framework.
Living within the severe constraints which the development of the
initial Macintosh (128K RAM memory) posed should have made the
designers of its interface more aware of what is necessary and what
becomes a frustrating user interface option. For as long as Macintosh
was little supported by software developers, the weaknesses of the
operating system were little noticed. Later, this situation changed;
the “fat” Mac and the Mac Plus solved some critical problems.
Nevertheless, each improvement seemed quite accidental because
Apple failed to understand the need for a comprehensive design
language®© within which scope, changes and improvements maintain
the identity and integrity of the product.

In view of the semiotics of the interface, the following charac-
teristics proved critical for the system:

1. directness or simplicity (which the Macintosh designers stretched
almost to the extreme with visual representations that are some-
times excessive in their details);

© Copyright Mihai Nadin, 1979.

INTERFACE DESIGN AND EVALUATION 75

J

2. consistency or uniformity, observed within applications but not
among them. The degree of integration is actually less than some
believe and Apple advertises. However, a certain modularity is
noticeable;

3. permissiveness, unfortunately not clear to the user how far an
application goes, and not entirely complemented by what is
known as “forgiveness” in the case of mistakes (the UNDO
function)—not every operation can be UNDO-ne, but this the
user finds out after the fact;

4. operationality, i.e., a set of qualities referring to computing time,
uniformity of speed, file management, etc.

Clearly, these characteristics are related. While Macintosh is a very
fast machine (assembler programmed), in its initial stage it had poor
file management and consequently seemed slow (psychological dif-
ferential) at times. When the user switched from the mouse functions
to the keyboard, this structural shortcoming became even more
evident. Some operations, “cut and paste” for instance, do not follow
the prefix mode.

The new Macintosh Plus offers the enhanced speed, storage, and
expandability which the specifications of its user interface design
require for meaningful use of the conventions it is based on. In
fact, the evolution is towards what Lisa offered before the Macintosh
became a product, especially the multitasking capability, plus a
much better communication capability, despite the limitations of
Appletalk. Even the input and output devices were improved. The
MacPlus has a keyboard with numeric keypad, four cursor control
keys, and a new port (SCSI, the scuzzy interface) for high trans-
mission speed connections of peripherals, which can further expand
the complexity of tasks for which users might choose this machine.
The long learning process, at the end of which semiotic implications
were recognized and actually used in Macintosh’s improved interface
design, does not stop here. There are other companies which use
the advice of designers aware of or applying semiotics to their own
work. Aaron Marcus and Associates is one such design firm whose
methods incorporate semiotic principles. Aaron Marcus (1983, pp.
63-70 and 1983, pp. 103-123) has written about his work, and I
encourage the reader to consult the respective articles.

TRANSLATING SEMIOTIC REQUIREMENTS INTO DESIGN

Part of the desktop metaphor, and certain elements of iconic rep-
resentation convention, have in recent years been assimilated in

76 NADIN

the design of interfaces for new machines competing for their share
of the market (Amiga, Atari ST, and a whole bunch of “generic”
computers). I see nothing bad in this trend, provided that, in the
process of imitating a successful approach, designers attempt to
understand what made this approach necessary. Generally speaking,
the design procedure is exactly the reverse of the interpretive process
the user goes through when dealing with user interface language.
Only after the appropriate functions are determined is it useful to
consider how those functions translate in computing content and
memory-related issues (i.e., semantics) and, furthermore, how this
content will be represented. If the pragmatics of the system leads
to the conclusion that visual representations (for example, icons)
are justified, design should be considered only in the greater context
of the design language system. I would insist that interface language
be, in principle, formal, which means that the language should
function according to a logical structure that the user is familiar
with or can easily grasp, and which, while adhering to the spirit
of computing logic, should not contradict so-called natural logic
(cultural background as the environment of human logic). Of course,
voice input devices—a subject impossible to ignore when predictions
present this alternative as almost available—do not make this task
easier. In the course of using a given interface, the user acquires
a progressively higher level of competence (learns the editor), and,
accordingly, user performance in operating a system improves (use
of short-cuts, for example). In respect to this, a certain influence,
quite often overlooked, is exercised by the type of computing en-
vironment: stand-alone (becoming more pervasive in the market),
distributed, or timesharing. The constraints each type imposes on
the design of the interface should also be accounted for when the
sign representing the system is constituted, not after everything else
has been defined. Many computers, especially stand-alone units,
are offered with all kinds of “cosmetic” interface contraptions added
under marketing pressure and offered by various OEMs. This quite
often affects the user’s performance and adds to the confusion
already disseminated by the rather chaotic computer market. No
interface language is an entity in itself, even if it enters the market
with the backing of the largest companies. In one form or another,
they all refer to everyday language(s), the so-called natural language,
to the language of gestures, of trademarks, etc. In extension of user
interface (documentation, tutorials, seminars, support, etc.), this as-
pect is even more obvious. While the conceptual model of a system
is the premise for the coherence of interface language, there is
actually nothing that guarantees such coherence. Knowing that the

INTERFACE DESIGN AND EVALUATION 77

user is in fact represented by a divided cognitive structure, in which
sequence and configuration (i.e., time-related and space-related per-
ceptions and activities) are not homogenously supported by the
brain, we should be able to design interfaces in such a way as not
to affect the balance of these two basic cognitive modes.

Interface engineers might find this distinction irrelevant to their
work. But experimental data fully support the fact that switching
from a sequential mode (operation of keyboards) to a configurational
mode (using painting devices, digitizing tablets, etc.) affect the user
and his or her performance. In a good interface design theory, the
observation that interfaces represent what we know about computers
and the humans using them might prove useful. For instance, know-
ing how people learn proved important at Xerox Park, where the
user interface “transparency” of interface is a cognitive quality
supporting sign processes within the general framework of the theory
of learning. Comprehending a specific system of signs means to
identify the structure of that system. The “transparency” of interface
is a cognitive quality supporting an emotional component. As long
as we have human beings in mind when we talk about the user,
emotions cannot be simply discharged as irrelevant. In order to be
made more apparent to the user, interface languages should use (a)
concrete representations of objects and storage, and (b) operation
representations that relate directly to actions. Concreteness and
directness must be expressed as clearly as possible.

Engineers require that we operationalize these terms; otherwise,
the requirement of concreteness and directness remain quite ob-
scure. To make concrete representations of objects and storage, one
can start with almost photographic images of the respective items.
Directness of actions can be achieved by animated sequences.
Whether, in the end, the interface will keep the photographic image
or simplify it in a realistic rendition is less important. However,
the level of concreteness should be uniformly maintained.

The wastebasket on the Lisa user interface has an elegant slant
lid. No other object represented on the desktop has a similar visual
accent. The icon of the computer is called Preferences. Actually
this is not the representation of an object, but of actions to be

I — E &3 [§

Wastebasket Profile Clipboard Preferences Diskette
Figure 14. The syntax of Lisa icons.

78 NADIN

performed: setting conveniences, selecting defaults, connecting var-
ious devices. While, during the design stage, concreteness was not
a goal, directness was, supported by the use of the mouse as a
pointing device. Evaluation of what is actually implemented allows
for improvements. The framework for evaluation is set by identifying
requirements—even those difficult to formalize and render opera-
tional—which ensure the quality of human-computer interaction.
The examination of the syntax of the icons in Figure 14 already
suggests ways to operationalize aspects of concreteness and direct-
ness.

As already stated, user interface contains the so-called input and
output devices and the interaction language as it is developed from/
with the conceptual model of a given system, plus extensions (doc-
umentation, tutorials, seminars, support, etc.). Obviously, the design
of such components (keyboards, tablets, light pens, painting devices,
printers, etc.) integrates product design considerations, ergonomy,
psychology, marketing, etc., but not always communication require-
ments. The unity of hardware-software, and their reciprocal influ-
ence, is also important. Very few systems available today, as far as
I know, were designed to integrate such diverse components. Dealing
with the pointing device (mentioned in the previous paragraph as
important in achieving directness) as an independent component
(there are manufacturers which specialize in “mice”) is against the
spirit in which this interface component was conceived. There is
nothing wrong with specialized manufacture-of—"mice” (or, for that
matter, of hard disk units, or other interface components)—if a
unifying and integrating design which is faithful to the initial concept
serves as a premise. But this is rarely the case. The three-button
mouse (e.g., on the Apollo workstation or on VAXSTATION 100) is
functionally quite different from the one-button mouse. But it was
uniformly integrated in the user interface. The syntax of clicking—
once, twice, three times—introduced by Apple affects directness. It
is not an extension but a new dimension, complicating the user
interface.

USER FRIENDLY: A FUNCTIONAL QUALITY

Ease of use and learning are frequently identified with user friend-
liness. This is accomplished when the interface is clear, displays
conventions familiar to the user, allows the user to infer from the
use of one application to another; when the system is reliable and
responsive; when help is provided but does not become excessive,

INTERFACE DESIGN AND EVALUATION 79

and is provided in adequate formats corresponding to the user’s
level of expertise. Hence, friendliness is not only an interface issue.
Unreliable or slow systems are not friendly even if the interface is
pleasant. The Xerox 6085 office system is an example at hand. It
apparently uses the successful iconic interface of the Xerox Star,
while simultaneously imposing upon the user rules of operation
(e.g., moving icons, copying, printing, etc.) which, after Lisa and
Macintosh, are anachronic. The system is slow. Consequently, the
appearance of friendliness and the slick product design turn into
teasers. The quality of typography and, for computers with color
capabilities, color considerations affect friendliness, too. Rudimen-
tary icons in color, such as the ones used on the Amiga, make clear
that without maintaining the quality of design, the iconic interface
can degenerate. One critical area—also evident in the Amiga—
involves error messages. Errors make the user, even the expert,
quite uneasy. The way errors are represented to the user affects
performance and the learning curve. Using the appropriate word or
image, or their combination, is an important semiotic requirement.
Usually, an alert file stores these messages; but it is the routine of
the alert manager designed to display them. And this particular
routine is usually designed with little understanding of error message
semiotics.

Error messages, often anthropomorphized, should be integrated
in the user interface language and reflect the degree of integration
of the available software. The problem is that, since the software
comes from different developers, who receive ‘only system specifi-
cations, error messages are improvised without any consideration
of the interface requirements. A recent analysis of error messages
in the major programs available for the IBM-PC—S5 years after its
introduction, and with three million machines sold—shows that
they constantly deviate from the convention of the user interface.
In the case of programs trying to emulate the desktop metaphor in
the IBM-PC environment, error messages pertinent to the Macintosh-
are simply taken over (the icon for a crash, the message referring
to the sequence “select object before action,” corresponding to the
postfix syntax of the interaction language).

An important conclusion resulting from the observations discussed
and exemplified above is that, while underlying principles are rel-
atively independent of technology, semiotic principles, as they refer
to sign processing, become technologically dependent when applied.
This reflects the law according to which the pragmatics of the sign
is context sensitive (Nadin, 1981, p. 215). There is no way to avoid
the consequences of this law. Efforts in the direction of better

80 NADIN

programming (sometimes for the sake of programming) or higher
technology (sometimes for the sake of technology) are quite im-
pressive. Programming and technology are interwoven. Design weaves
them together, and precise design concepts, uniformly applied, en-
sure the unity of the computer. As mentioned above, interface issues
are issues of interpretation (pragmatics) as related to the various
types of signs used in interface. Recognition of the object represented
is based on two complementary processes:

1. recognizing parts of the object in relation to each other and to
the whole, and arriving at some inference based on their in-
terrelationship;

2. recognizing the whole, and inferring from the whole to the parts.

A product’s look and functionality are a continuation of user in-
terface, and are related to every other interface of the system. In
the course of product design, the formal and the functional qualities
should be achieved, while considerations of semiotic unity of the
interface are observed. User friendliness refers to physical and
mental aspects of working with a computer, programming it, or
simply using some of its routines.

Usually, designers know what their computer is supposed to
provide; that is, they know what the expected product can be. They
also know, or are able to determine, who is going to use the computer
(be interested in the product) and what his or her background is.
At the system level, the following relations can be established in
view of the intended user friendliness (see Figure 15).

Within a given conceptual level, which takes into account the
multiple interconditioning of user interface, it is possible to avoid
both settling at an arrogant level (if you don’t understand it, too
bad!) or a primitive form of friendliness (which ends up offending
the user). There is no such thing as universal friendliness. This
becomes clear at the conceptual level, which shows that each user
will form his or her own model when using a given computer (see
Figure 16).

Should interfaces entirely specify a course of action (friendliness
by holding the user’s hand through every step), or provide a free
environment in which each user is able to decide his or her own
sequence? The question has no clear cut answer. In my recent work
on a project entitled Design Machine, this issue was brought up by
the community of designers for which we want to build a computer
able to support not only production, but also conceptual, creative
work. Simulation in software of design work showed us that basic

INTERFACE DESIGN AND EVALUATION 81

User Interface, User

Language Competence 1
*
\Y
Conceptual \ User roduct
Model \ Performance [~ P ¢ !C
‘\
‘u
User’s Background:
experience =<+
comprehension

Figure 15. Systems view of the structure of interface elements.

design tools are necessary, but that they have to be conceived as
versatile, as “soft” as possible (cf. Nadin, 1986).

The model developed by each particular user (influenced by
manuals, guides, tutorials, etc.) is the product of “learning” the
system or being “taught” how to use it. Generally speaking, the
user employs interface according to the semiotic interpretation given
to the interface. This interpretation is based on the user’s model.
Preconceptions influence this model; so do other semiotic contexts:
cognitive skills, emotional factors, aesthetic characteristics, etc.

CATEGORIES OF USERS

The common representation of the user distinguishes the novice
from the veteran. This is a linear representation, very comfortable,
but not necessarily appropriate (see Figure 17). It implies that a
novice will sooner or later become an expert, a supposition that is
far from confirmed. It also implies that, once initiation is over, the
expert must work with the limitations inherent in the system that
made it approachable to the novice, i.e., accept the help that later
turns into a hindrance. A more complex model is necessary, one
that considers the knowledge the user accumulates from working
with various computers as an important characteristic of the dy-
namics of the interface. Although experience is important, a semiotic

82 NADIN

Conceptual level

Computer Literacy

T

Shared Conceptual Model

A

Conceptual Model
User’s Conceptual Model |~

T

User’s PREconceptions

of Interface

Figure 16. Conceptual level.

Simplified User Model Naive Experienced

.
L

Figure 17. Simplified user model.

property of computer-aided activity is that, in order to understand
and use sign systems, a user has to bring into the activity not only
specialized knowledge, but also comprehension skills gained from
culture and general education. Computer literacy is only part of
this comprehension. The improved user model is supposed to help
the interface designer evaluate his choice of signs (see Figure 18).

The distinctions naive, competent, experienced, and expert are
not easily quantifiable. Intuitively, designers tend to identify such
distinctions through the use of certain idiomatic expressions (words),
or by giving up images (deemed primitive). Lisa was designed not
just as an office system addressing secretaries, accountants, graphic
designers, and other professionals, but also as a computer tool which
could support a fair amount of development work. The distinction

il

INTERFACE DESIGN AND EVALUATION 83

High
Improved User Model t
= competent expert
8
‘B
g
=
1]
1)
E' ®
S
Q
naive experienced
Low Experience High

Figure 18. Improved user model.

between the office system environment and the workshop actually
reflected the distinction between user and programmer. The desktop
metaphor and iconic convention were carried over to the workshop
environment only to a very small extent (Preferences and Editor).
Once in the workshop, the programmer faced conventions familiar
to professionals acquainted with a programming environment: FI-
LEMgr, SYSTEMMegr, Edit, Run, Debug, Pascal, Basic, Quit? (at the
top of the tree). The cursor functions only for Edit and for setting
Preferences. A letter confirms each command selection. The tree of
successive options goes no deeper than two more layers. The change
in the set of signs used (from icons and menus to actions specified
in technical terms, from windows to separate process commands,
etc.) corresponds to the change of expected user, but in a way in
which jargon takes over the interface concept. For some reason, the
computer community developed a scientific vocabulary and a stock
of almost private expressions—opaque to the nonexpert and hu-
morous (or intended to be so). We know how this semiosis came
about. We also know that the energy and inventiveness of young
and very young computer developers contributed to a special stratum
in our technological culture. In the workshop, friendliness takes the
form of options which in the office system would sound threaten-
ing—Kill Process, Sca venging—or questions which sound worse than
‘what they are— What? or the abrasive Do you really want to. . . .?

o

84 NADIN

Interface designers could avoid the discrepancy noted here if they
considered the users from the perspective of the expected compre-
hension and assumed experience, as reflected by their professional
language (a subset of the natural language they use) and their ability
to infer from one environment to the other, from one program to
the other. In view of this, the two-dimensional matrix can be
improved, first of all by involving other qualities which, after the
introduction of more “intelligent” systems, have proven essential
in computer use and are more and more acknowledged in computer
culture. Imagination, to give just one example, plays an important
role in prégramming, as well as in running programs or adapting
programs to new functions. The multidimensionality of such matrix
representations corresponds to the user’s intellectual and emotional
qualities (see Figure 19).

An immediate practical application of this representation is in
designing interfaces for the handicapped. The way people with
impaired hearing and vision and those with physical handicaps
interpret signs belonging to language and other systems of expression
has to be considered when interfaces meant to support their access
to computers are designed. Although some research has been done,
more is necessary. We know, for instance, that the deaf have prob-

Suggested User Model:
a multidimensional matrix

High

Comprehension

<
./.9
&

Low Experience High

Figure 19. Suggested user model.

INTERFACE DESIGN AND EVALUATION 85

lems in dealing with time and time-related representations. Ac-
cordingly, interface has to be conceived as an expression of space
relations. Audio components of user interfaces, on the other hand,
help people with impaired vision. In this case, every quality of
sound can be used, the pattern of sound sequences becoming part
of the language. The semiotic concept of appropriateness applies in
such cases.

COMPUTERS, USERS, AND COMMUNICATION

Signs are used predominantly for communication. They are means
to represent our problems: mathematical signs for mathematical
problems, 3-D representations for architectural problems, natural
languages or formalisms (diagrams, vectors, matrices, etc.) for de-
scribing social problems. Computers are basically used for problem
solving, a fact that should be carefully considered when commu-
nication issues are approached. As opposed to other tools, the com-
puter is a “universal” problem solver once the problem is presented
in a computable form (see Figure 20). '

This model was devised after viewing computers from the semiotic
perspective, i.e, after considering how people interact with each
other through the intermediary of the messages they exchange.
Biihler (1933), in his impressive semiotic study of social commu-
nication which, unfortunately, scientists outside his field know little
of, and Jakobson (1960), in his research of linguistic processes, made

Algorithm
User l Process
Interface Interface
User —————>| Problem ~—— Computer
Computable
Function

Figure 20. Semiotics of the user-computer relation.

86 NADIN

1.

2.
3.

contributions which help us better understand the nature of com-
munication.

Examining this model (see Figure 21), (to which Calude and

Marcus (1985) brought their contribution), we can identify several
functions, to which I add their implications for the user-computer
relation.

the function of communication—actually the function of main-
taining communication, identified as the phatic function

the expressive function—relating addresser and the message
the metalinguistic function—dealing with the functioning of the
code(s) used (expressing both the addresser-code and addres-
see-code relations)

the pragmatic function—dealing with the context and the way
it influences communication (relation between addresser, ad-
dressee, and context)

the connative function—representing the attitude of the ad-
dressee towards the message (imperative messages are quite
different from optional or query messages)

the design function—reflecting the way the addresser and ad-
dressee (in particular) relate to the medium

the referential (or cognitive) function—dealing with the meaning
of the message

the formal (poetic) function—pertaining to the message’s formal
qualities (syntax error, for instance, is but an indication of this
function).

Looking at a symmetrical communication structure, we have to

Code

|

Medium Medium
Addresser |—————| Message

Y

Addressee

|

Context

Figure 21. Communication in the semiotic concept (cf. Buhler-Jakobson).

INTERFACE DESIGN AND EVALUATION 87

consider specific situations related to the three basic segments iden-
tified in order to obtain optimal design: user-computer, com-
puter-computer, computer-user. Examining Figures 20 and 21, the
reader will notice the line of thought pursued: The message is the
problem to be solved with the computer’s help; the context and the
code are represented by the computable function which describes
the problem and by the program as based on some known or newly
developed algorithm. A minimal requirement is that communication
be maintained (the phatic function). This minimum proves quite
complex (ever heard of crashing?) and involves the relations among
user-computable function, computable function-program, pro-
gram-computer, user-computer. Some computable functions de-
scribe a given problem better than others. But not all are equally
computable; and if in principle they are computable, then some
limitations in the hardware may affect the response time. And since
each system comes with specifications impossible to avoid, whether
the given system can accept the program becomes an issue, And if
it can, how effectively? Finally, the messages meant for the user
(and “issued” by the computer) should be concise, precise, and
understandable—conditions easier to claim than to implement. I
shall refer here only to the connative function, from among the
others, mainly because interface issues are concerned with the type
of problems a system is supposed to assist the user in solving. Two
different forms of “intelligence” are evident: the “intelligence” built
(wired) in the hardware, and the “intelligence” of the program.
Several design decisions are expected in regard to error handling
(interface and compiler, or interface of an environment like LISP
or PROLOG), feedback to the user (how? what? why?), type of
Processing (effective, virtual), etc. The referential function is difficult
to approach because, while the computer is a Boolean machine, the
relation between the concrete problem and the computable function
can be described in modal, not binary, logic. The expressive function,
influenced by the same two-valued logic, reflects the state of the
art in deterministic thinkin , hopefully to be improved by the use
of fuzzy logic or of the logic of vagueness. Zadeh (1984) is the best
source for more information on this matter. Looking from the com-
puter to the user, we see a slightly different picture in Figure 22.
Obviously, the referential function of this segment is the same as
the metalinguistic function of the user-computer segment. Two
interesting aspects relate to the expressive function:

1. As a Turing machine, the computer can deal with the com-

88 NADIN

Wr—,

Program
and Data

Process User

Interface Interface
Computable -

Function

|

Operational
System

User

Computer

Figure 22. Computer-user relation.

putable function step by step (one thing at a time); i.e., no
evaluation of the entire function is possible.

2. Moreover, the computer evaluates only a limited part of the
generally infinite function, which brings into discussion the so-
called approximation of the infinite by the finite (in computer
terms, the evaluation of algorithms by machines).

Recently, artificial intelligence concepts (Reichman-Adar 1984,
pp. 157-218) have suggested ways to improve this function. The
problem to be approached in this respect is the presentation of a
computable function in machine language. Operationally satisfactory
definitions for computable functions are far from being a trivial
issue. The designer of interface (process interface in this case) should
be aware of the semiotic implications of this issue. We can refer
to compiler-related aspects as a particular case pertaining to the
same segment of communication (see Figure 23). Very relevant here
is the metalinguistic function, since what actually goes on is “trans-
lation” (from programming language to machine language). We refer
to three semiotic aspects of such translations: Is it faithful? How
complex is it? How efficient is it? Although the user is not distinctly
referred to in this segment, the formal (poetic) function is very
important. The programming language influences the way the search
for syntactic errors takes place and, in the case of more advanced
systems, the so-called level of gravity (permissiveness of the system).
Some languages better support this function by allowing a higher
level of gravity (that is, although a program may have some errors,

INTERFACE DESIGN AND EVALUATION 89

it is “accepted” in the processing phase). More recently developed
programming languages provide an improved formal function.

The last segment to be considered concerns the computer user
(see Figure 24). Basically, this segment deals with the way the
results of computing (finite subset of the range of the computable
function used) are made available/communicated to the user (as-
suming that the program was accepted and run and that the data
was compatible with the software requirements). Semantic consid-
erations are prevalent in this segment. The user ignores the met-
alinguistic function if the program performs well, In a debugging
mode, this function becomes very important. As I have already
shown, interface designers treat application environments and pro-
gramming and debugging environments as though they were totally
independent.

In short, the model presented here introduces normative concepts
which interface designers should observe. It also suggests that eval-
uation should take place more systematically, submitting by explicit
requirements a set of criteria derived from the semiotic perspective
on which this model is built. Some requirements are already known
(some even observed!); others have not been adopted in design
interface. What is perhaps more important, the model explains the
interrelation between the requirements, making clear that a system
with high performance and low permissiveness—to mention one
example—undermines the purpose of a user friendly interface. The
vocabulary used in explaining the semiotic implications is of mar-
ginal importance. I do not suggest that designers learn this vocab-
ulary, but that their understanding of what is explained by using

Machine
Language

Process Process
Interface Interface

C tabl
Computer (———> F::th’il:):b f— Computer

T

Program
and Data

Figure 23. Semiotic components of inner computer processes,

90 NADIN

Program
and Data
Communi- l
cation Output
Protocol Devices
CPU - |Computable{ ..
Function .
Display
T Processor
Memory

Figure 24. Semiotics of output.

these concepts can be improved. Entrenchment in jargon—and this
holds true also for the computer jargon (“computerese”)—annihilates
the spirit of interdisciplinarity that we all agree upon.

ACCOUNTING FOR THE USER’S COGNITIVE
CHARACTERISTICS

If we intend to deal with a user as concretely determined as possible,
we have to incorporate results of cognitive studies of humans in
the knowledge used for improved interface design. Some human
characteristics are fuzzy: attention, response, adequacy of sign inter-
pretation, to name a few. Others, while perhaps significant in work
with tools different from computers, only marginally affect inter-
action between user and computer: endurance, sociability, exercise
of physical strength, to name a few in this category. Attention should
be given also to affordance parameters, reflecting environmental
requirements and a better understanding of the relation human
being-environment. Partially, ergonomic considerations cover such
affordance parameters. In each of the above cases, semiotics is
involved mainly in the way people externalize their opinions and
beliefs and in how they express themselves and make their expres-
sions understandable to others. In a matrix characterizing the future
user, we should also deal with how human beings form their
representations, beliefs, ideas, doubts, i.e., the internal semiotic
characteristics of thought processes and emotions. Cognitive sci-
entists agree with semiotic theories concerning the semiotic nature

INTERFACE DESIGN AND EVALUATION 91

of thinking as well as the semiotic implications of feeling. One
aspect of immediate practical relevance can be given as an example.

Whether the distinction left-right hemispheres of the brain can
be sustained or not—an issue very much on the minds of psy-
chologists and cognitive scientists—we cannot ignore the semiotic
observation that signs can be structured in sequence (arrays of
symbols) or configuration (e.g., visual constructions). The two modes
in which we perceive and organize information are reflected in the
characteristics of their interpretation. As far as we know, human
beings process symbolic information mainly sequentially. Computers
function the same way. Configurational systems of signs are pro-
cessed by human beings in a parallel way. In the first case, a
predominantly analytical dimension is apparent; in the second, a
synthetic dimension. In sequential processing of signs, there is a
dominant attempt to differentiate; in configurational, integration
dominates. Time is related to sequence (our time representations
are sequential), while space is related to configuration (see Figure
25). The two modes are interrelated, interfere with, or try to suppress
each other; under certain circumstances, they enhance each other.
To involve the user in a homogenous environment, i.e., to avoid
abrupt switching from one mode to the other, is a minimal require-
ment almost consistently ignored by interface designers. Even when
the designer provides a pointing device (e.g., a mouse), one type of
user will rely on emulating keys in order to avoid swift changes
that in several tests have proven exhausting (Patterson, 1983, pp.
75-82). A second requirement, reflecting the fact that users are so
different, is to give the user a choice of dominant mode. Cooperation
or interference between the basic cognitive modes takes place through
both hardware and software (see Figure 26).

Physical properties (of the keyboard, display, printer, pointing
device, etc.) are but an extension of the properties of the system
in its entirety. While aesthetic and functional criteria are difficult
to encode, they influence the design of the interface. No matter
how attractively the mouse is designed, if the user is forced to
switch often from pointing (configuration semiotics) to the keyboard
(sequence semiotics), the design is inappropriate. To provide a really
user-friendly interface means to make possible not everything, only
what is acceptable. Aesthetic and functional acceptability, as well
as cultural adequacy, are becoming ever more critical qualities once
computer technology matures. Only a superficial designer, who
targets the lower level of the market, thinks that cultural adequacy
is reducible to emulation of characters used in foreign languages.
Unfortunately, almost nothing is ever attempted beyond this. (IBM

92 NADIN

Sequence Mode se e

Configuration Mode -« ‘e Sequence

Output

N Configuration

el .

System [— | User Interface
Keyboard
Input
Mouse

Figure 25. Sequence vs. configuration.

is a rare exception, AT&T a promising challenger, with impressive
user interface accomplishments, especially on systems designed for
internal use or switches). Typically, designers approaching interface
issues, particularly communication aspects, are obsessed with quan-
titative aspects or make decisions based on intuition. Neither can
be ignored, but to reduce interface issues to quantity is unacceptable.

An example of how this direction should be pursued is given by
the Vivarium Project, a curriculum-driven project seeking to teach
children about animals and initiated by Alan Kay. In her paper,
Allison Druin (1986, p. 2), a former student of mine, currently a
graduate student in the MIT Media Lab, asks: What will the next
generation of computer learning tools be? From among many se-
miotic aspects of the Vivarium, Allison Druin (1986, p. 2) concen-
trates on one alternative (the furry computer called Noobie) to the
traditional terminal: “a soft and inviting environment, which sur-
rounds the child, and looks like a five-foot version of the squeezable
input device . . . what emerged was the idea of a tactile computing
environment in which the child would sit and create animals in
the actual input device.” We notice here several ideas relevant to
the approach: the “universal” tool can be adapted to various tasks,
not only through its application programs—which is the dominant
strategy today—but also through an interface design adapted to the

INTERFACE DESIGN AND EVALUATION 93

Operating System

Integrated Applications

| I

= | Digital User Interface

!

Display
(alpha and graphic)

A

Alpha Keyboard

Y

hemispheres
e
T ———————
Semiotic/
Cognitive
Processes

Figure 26. Integrating sequence and configuration.

cognitive characteristics of the activity that the computer will sup-
port. Adaptation of the tool to the problem will take place through
the intermediary of different interfaces that are part of the system
and that simultaneously connect the system with other environ-
ments: the user, other systems of education such as toys, stuffed
animals, drawings, animation, entertainment. (It is no accident that
the Henson Group is involved in this project.) Programs are abstract
entities which obey formal rules. Applications, such as editing a
document and retrieving from a database, cause an abstract entity
(document, database) approachable through appropriate interface to
have a concrete reality: Documents receive names; information can
be ordered and formatted according to needs.

In short, using a computer means to make the abstract concrete.
As opposed to typewriters, a word processing program is all the
typewriters which can exist. A database program has the same
characteristic. The designers of the Vivarium understood this se-
miotic peculiarity of computer tools, extended the limit to which
the abstract program is made concrete, and integrated even the

94 NADIN

terminal and input devices. Indeed, the study of animals by children
cannot be reduced to an exercise in typing on the typical keyboard,
or to a display, no matter how sophisticated, on a CRT screen.
There is more to the experience of such a class. There is the sense
of touch, the sense of proportion, sound, etc. Correspondence to the
real world will be ensured through an improved convention of
likeness. This treatment of interface makes several channels of
interaction necessary.

PRESENT AND FUTURE

The different ways users interact with interface devices is very
important and should be accounted for in design specifications. But
while we understand how the machines we build work, and even
manage to find out why their functioning sometimes seems “irra-
tional,” we only partially understand processes in which our think-
ing and emotions are involved. Some progress has been made in
understanding behavioral aspects; cognitive processes have been
extensively and intensively researched, too. The results are fre-
quently applied in the design of interfaces. The following aspects
are routinely observed: message from user to computer, feedback,
and computing and return of results. But, as was already mentioned,
interfacing goes well beyond these and extends to everything a user
will come in contact with when using a system and getting output
from it (on CRT display, slide, film, hardcopy, etc.). Two attitudes
regarding how interface should be approached can be identified:

1. Emulate the current human way of thinking and acting on the
computer. (“It is important that the formal computer procedures
do not prevent the user from changing his representation of the
problem or task environment necessary to reach the best so-
lution.”*)

2. Challenge the user with a totally new language, thus with a
totally new way of thinking and acting.

In both cases, a better understanding of what languages are, how
they are used, and how they work is necessary. Our expectations
are reliability, with tolerance towards the user if possible, self-
sufficiency, ease of use, and adaptability. All relate to the semiotic
qualities of interface language. We can distinguish between as many

* This is a quotation whose source I no longer know.

INTERFACE DESIGN AND EVALUATION 95

languages, as many senses, as we have; and this distinction en-
couraged the Vivarium concept. A “taste” statement can go as a
mixture of, or succession from, sour, bitter, sweet. . . . hot, warm,
cold . . . or can represent an example of a touch-interpreted state-

by understanding the specific semiotics of each sensory environment
through paying attention to general semiotic principles.

The main system of signs are the visual and the verbal (natural
language). In reality, the distinction is less obvious, and influences
between both are very important. Another distinction is between
natural and formal languages. A suggestive representation can be
given as a matrix (see Figure 27). Voice input devices, or other I/
O features (heat sensitive, touch sensitive, for instance), will of
course require a more sophisticated matrix which is not just mul-

level demanded by specialized fields (mathematics, symbolic logic,
language programming, dance, music, etc.). Reading text written in
a programming language, or a musical score, or a choreographic
laba-notation is difficult. Formal visual languages may prove difficult
to “write” in but can be read more easily (not necessarily with

rigidly specified as the grammar of formal languages. On the other
hand, it is harder to be specific, precise, and to avoid ambiguity in
natural language. In the cultural environment, this is an advantage
evidenced by qualities which are usually not duplicated in formal
languages. This is not to say that natural language is easier to use,
as S0 many assume. Bar-Hillel (1970} maintained that natural lan-
Buages are essentially pragmatic-free. Whether something funda-
mental has changed since 1970 in respect to our understanding of

96 NADIN

the pragmatics of formal languages, or to the way such languages
are used, is a matter of controversy. Nevertheless, the pragmatics
of natural languages is far more difficult than the pragmatics of any
other language (formal included). What we address here are issues
of language use in two different environments: one in which the
user is comfortable, since it is the environment of his or her everyday
life; and the second, in which the user faces something less familiar,
in which interface should play a mediating role. “The ideal situ-
ation,” as van Dam (1984, p. 646) described it, in tune with many
computer scientists and/or science-fiction writers, “would be to
interact with the computer as if it were a helpful human being,
perhaps chatting in natural language.”

Progress in better emulating natural languages (English basically)
is to be expected, but the use of natural languages can become
possible only on computers applying the logic of such languages. In
reviewing this paper, Tom Carey tried to convince us that there is
no reason why multi-valued logic cannot be simulated. Interface is
a trade-off in which amount and type (of signs used) are the fun-
damental parameters. Norman (1983, p. 1), who introduced a re-
markable quantitative method for trade-off analysis, makes the basic

Language Matrix possibilities:
formal -visual
formal -verbal
natural -visual
natural -verbal

formal
verbal visual
natural

Figure 27. Language matrix.

INTERFACE DESIGN AND EVALUATION 97

statement: “Any single design technique is apt to have its virtues
along one dimension compensated by deficiencies along another.”
Maybe Figure 28 will explain the kind of trade-off implicit in the
semiotic decision involved in the-design of interfaces:

In the Programmer’s Hierarchical Interactive Graphics System
(also known as PHIGS), goals specific to rendering visual presentation
of information require a semiotic structure which supports inter-
action. As a toolset, the system permits model building and ma-
nipulation. Its transformation pipeline starts with visual primitives
(modeling of coordinates) on which operations corresponding to
viewing (from world coordinates to viewing coordinates, according
to the photographic camera metaphor), clipping, and mapping are
applied. The. workstation independent elements are interfaced with
workstation dependent elements. The organization of data is mul-
tilevel. Obviously we have here an implementation of a formal
language in which the predefined grammar applies to images. As
an interactive graphics interface, it supports a semantics specific to
images and not to natural language statements. PHIGS is an inte-
grated, interdisciplinary approach to interface which considers the
contribution of each component. Semiotics coordinates the relation
between everything that participates in interfacing. Product design,
software engineering, hardware, ergonomics, etc.—highly specialized
fields—should each in turn be evaluated and integrated in the
comprehensive language of the product using PHIGS. Of course,
semiotics has to provide the necessary means required. Recent

Natural Language Formal Language

general specific

unlimited vocabulary limited vocabulary

indefinite grammar predefined grammar

intuitive structure logical structure

easily acquired competence difficult to acquire competence
difficult to obtain performance easy to attain high performance/

easy to learn

Communications Characteristics
of Formal Languages

write select read

understand system read system model system
concrete knowledge intuition intuition

have purpose have purpose indefinite purpose
syntax error semantics error semantics error

Figure 28. Natural vs. formal languages.

e —MEE ==

e —

T

98 NADIN

contributions (cf. Winograd and Flores, 1986; Lakoff, 1987) concern-
ing conception of the mind and understanding of computers suggest
alternative strategies for designing computer systems. It seems that
the maturing of technology and difficulties in accounting for failures
affecting people’s use of computer technology made the need for
improved understanding of human-computer interaction more crit-
ical than at any previous time.

FINAL REMARK

In concluding one of the most passionate debates of the CHI 86
ACM-SIGCHI Conference on Human Factors in Computing Systems
(Boston, April 1986)—the one between Stu Card and Don Norman—
moderator Richard Pew noted that it explored whether “systematic
effort applied to interface design is a worthwhile effort.” This chapter
contributes to an affirmation without ignoring that “design through
natural evolution” (comparable to the natural evolution of our use
of various signs) brings its own contribution. Method helps intuition
if it is not transformed into dictatorship. Intuition augments method
if it does not instill anarchy. In every moment of our semiotic
existence, method and intuition complement each other.

ACKNOWLEDGEMENTS

The author is grateful to Leif Allmendinger, Thomas Ockerse, Rich-
ard Zakia, and Harvey Carapella for valuable comments and for
providing some of the figures used here. In addition, the author
thanks his students from the class, “Semiotics of Computer-Aided
Human Activity”, held at The Rochester Institute of Technology in
Spring, 1984, during his tenure as William A. Kern Institute Professor
in Communications, and “Computer Graphics-Graphics Design Is-
sues,” Autumn 1984, RISD. The reviewers, Dennis Wixon and Tom
Carey, as well as the editors, Rex Hartson and Deborah Hix, provided
criticism and questioned many of my views. If the chapter improved
and is at the level of their expectations, I gladly share with them
in the credit it deserves. Shortcomings are, of course, my respon-
sibility.

INTERFACE DESIGN AND EVALUATION 99

REFERENCES

Bar-Hillel, Y. (1970). Communication and argumentation in pragmatic lan-
guages. In Y. Bar-Hillel (Ed.), Pragmatics of natural languages. New
York: Humanities Press.

Biihler, K. (1933). Die Axiomatik der Sprachwissenschaft. Kant Studien, 38,
19-90.

Calude, C., & Marcus, S. (1985). Introduction to the Semiotics of
Man-Computer Communication. In M. Nadin (Ed.), New elements in
the semiotics of communication. Tiibingen: Gunter Narr Verlag.

Druin, A. (1986). A Vivarium project (MIT Media Laboratory Working Pa-
pers). July. Cambridge, MA.

Goldberg, A., & Robson, D. (1979). A metaphor for user interface design.
Proceedings 12th Hawaii International Conference System Sciences,
6(1), 148-157.

Haber, R.N., & Myers, B.L. (1982). Memory for pictograms, pictures, and
words separately and all mixed up. Perception, 11, 57-67.

Jakobson, R. (1960). Linguistics and poetics. In T. Sebeok (Ed.), Style and
language. Cambridge, MA: MIT Press.

Ketner, K.L. (with the assistance of A.F. Stewart) (1984). The early history
of computer design. Charles Sanders Peirce and Marquand’s logical
machines. The Princeton University Library Chronicle, XLV (3), 187-225.

Lakoff, G. (1987). Women,, fire, and dangerous things. What categories reveal
about the mind. Chicago/London: The University of Chicago Press.

Marcus, A. (1983, July). Graphic design for computer graphics. IEEE, 3(4)
63-69. Los Alamitos, CA: True Seaborn.

Marcus, A. (1983). Designing iconic interfaces. Nicograph 83, pp. 103-122.
Tokyo: Seminar Notes.

Meyrowitz, N., & van Dam, A. (1982). Interactive editing systems. Computing
Surveys, 14(3), 323.

Nadin, M. (1981). Zeichen und Wert [Sign and value]. Tiibingen: Narr
Verlag.

Nadin, M. (1986). Design machine. Columbus: Art and design technology
research notes.

Norman, D.A. (1983). Design principles for human-computer interfaces.
Human Factors in Computing Systems CHI '83. Proceedings. New
York: ACM.

Patterson, M.L. (1983, November). Graphical interface design considerations.
Computer Graphics World, 6(11), 75-82. Tulsa, OK: Pennwell Publi-
cations.

Peirce, C.8. (1932). The collected papers of Charles Sanders Peirce (C.
Hartshorne & P. Weiss, Eds., Vol. 2). Cambridge, MA: Harvard Uni-
versity Press.

Reichman-Adar, R. (1984). Extended person-machine interface. Artificial
Intelligence, 22, 157-218.

Schneider, M.L., & Thomas, J.C. (Eds.). (1983). Introduction: the humanization

of computer interfaces. ACM Communications 26(4), 252-253.

100 NADIN

Shannon, C., & Weaver, W, (1947). The mathematical theory of commu-
nication. Urbana, IL: University of Illinois Press.

Simon, H. (1982). The sciences of the artificial. Cambridge, MA: MIT Press.

Tesler, L. (1981). The Smalltalk environment. Byte, August, p. 90.

Thacker, C.P., McCraight, E.M., Lampson, B.W,, Spronll, R.F., & Boggs, D.R.
(1979). Alio: A personal computer (Report CSL-79-11). Palo Alto, CA:
Xerox Palo Alto Research Center.

van Dam, A. (1984). Computer graphics comes of age [interview]. ACM
Communications, 27(7), 646.

Winograd, T., and Flores, F. (1986). Understanding computers and cognition.
A new foundation for design. Norwood, NJ: Ablex Publishing Corp.

Zadeh, L. (1984). Coping with the impression of the real world [interview].
ACM Communications, 274}, 304-311.

