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Abstract. Software agents are a well-established approach for modeling au-
tonomous entities in distributed artificial intelligence. Iterated negotiations al-
low for coordinating the activities of multiple autonomous agents by means of
repeated interactions. However, if several agents interact concurrently, the par-
ticipants’ activities can mutually influence each other. This leads to poor co-
ordination results. In this paper, we discuss these interrelations and propose a
self-organization approach to cope with that problem. To that end, we apply dis-
tributed reinforcement learning as a feedback mechanism to the agents’ decision-
making process. This enables the agents to use their experiences from previous
activities to anticipate the results of potential future actions. They mutually adapt
their behaviors to each other which results in the emergence of social order within
the multiagent system. We empirically evaluate the dynamics of that process in
a multiagent resource allocation scenario. The results show that the agents suc-
cessfully anticipate the reactions to their activities in that dynamic and partially
observable negotiation environment. This enables them to maximize their payoffs
and to drastically outperform non-anticipating agents.

1 Introduction

In distributed artificial intelligence, software agents model autonomous entities which
plan and perform their activities in multiagent systems. These autonomous agents are
able to proactively select their actions, to react to changes in their environment and
to interact with each other [31]. In the latter context, iterated negotiations are a well-
established means for coordinating distributed systems containing multiple agents. The
participating agents can negotiate on allocations of resources, delegations of tasks,
as well as commissions of services. This enables them to identify appropriate part-
ners which complement their own capabilities in order to meet their individual objec-
tives [10, 23].

Nevertheless, a problem occurs if several of these interactions take place concur-
rently. In this situation, the participants’ activities can mutually influence each other.
That is, the outcome of each negotiation depends on those being performed simulta-
neously. This is particularly the case in joint negotiations of cooperating agents which
require them to compromise about their desired agreements. In order to enable efficient
and robust multiagent coordination, the agents have to take these interdependencies into
account when selecting and evaluating their respective actions in iterated negotiations.
That is, they must adapt their behavior to the activities of others.
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In a competitive setting, a game theoretical equilibrium [19] denotes a combination
of each individual agent’s best response to the others’ behaviors. However, acting in a
partially observable environment, the agents are unable to explicitly compute such an
equilibrium. Therefore, we propose to approximate it by means of agents adapting their
activities to each other. Inspired by Niklas Luhmann’s theory of social systems [15, 17],
our approach enables these agents to anticipate the reactions of others to their own ac-
tions. Thus, they can select best responses to the expected behaviors of others. To that
end, we apply distributed reinforcement learning to agent decision-making in iterated
multiagent negotiations. Using this technique, each agent learns a best response behav-
ior to the others’ activities without the necessity to observe them directly. This results in
a self-organizing system of mutually interdependent activity selections in which social
order emerges from the agents’ concurrent learning efforts.

We structure this paper as follows. Section 2 elaborates on concurrent iterated nego-
tiations and discusses their challenges as well as existing approaches to address them.
Subsequently, Section 3 presents the main contribution of this paper which is three-
fold. Firstly, we model concurrent negotiations as repeated games and propose multi-
agent learning for coordinating them. Secondly, we discuss Luhmann’s notion of self-
organization in social systems and its adaptation for multiagent coordination. Thirdly,
we introduce decentral decision-making criteria for terminating multiagent negotia-
tions. Section 4 empirically evaluates this approach in a distributed resource allocation
scenario. This evaluation confirms the ability of learning agents to successfully antic-
ipate each other’s behaviors and provides insights into the dynamics of that process.
Finally, Section 5 concludes on the achievements of this paper and outlines directions
for future research.

2 Iterated Multiagent Negotiations

Iterated multiagent negotiations denote a process of distributed search for an agreement
among two or more participants [13]. This process consists of the negotiation objects, an
interaction protocol, the participating agents, and their decision-making mechanisms.
The negotiation objects determine the search space of potential agreements. In the pro-
cess, the agents exchange proposals which their counterparts can either accept or reject.
While the protocol defines the possible sequences of messages, an agent selects its
actions among those possibilities by means of its decision-making mechanism. If the
agents find a mutually acceptable agreement according to their individual preferences,
the search returns this solution as its result. Otherwise, it terminates without success.

In the following, we further elaborate on these aspects of multiagent negotiations.
In particular, Section 2.1 examines negotiation objects and protocols. This provides the
foundations for discussing the challenges of agent decision-making as well as existing
approaches to cope with these challenges in Section 2.2.

2.1 Negotiation Objects and Protocols

The negotiation objects define the topic on which the participating agents attempt to
reach agreement [13]. They cover the target of a negotiation such as the desired ser-
vice fulfillment or resource allocation. Moreover, they denote the cardinality of these
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Fig. 1: The FIPA Iterated Contract Net interaction protocol (adapted from [11])

items: Either single or multiple ones. In the latter case, the agents negotiate on possible
combinations of the target products or services. Many-object negotiations require them
to identify a mutually acceptable compromise out of the range of those combinations.
In the following, we focus on many-object negotiations as they subsume the special
case of single-object ones. Furthermore, they are equivalent to cooperative activities of
several agents attempting to achieve common goals. In that case, several agents group
together in teams [32, 25, 22]. These teams negotiate as composite entities in order to
further their common objectives while competing with other teams or individual agents.

To structure the negotiation process, there are two basic protocol types for exchang-
ing proposals [13]. In auction type negotiations, one or more agents exclusively propose
potential agreements while the others only accept or reject them. An example for this
is the Dutch auction in which the auctioneer repeatedly decreases the proposed price
until one or more buyers accept the current offer. Contrastingly, in negotiations of the
bargaining type the agents bilaterally exchange offers and counter-offers. Hence, they
mutually attempt to steer the search in their individually favored direction. On the one
hand, this increases the speed of reaching an agreement; on the other hand, it requires all
participants to be capable of both evaluating and generating meaningful proposals [10].
In this paper we mainly focus on negotiations of the auction type. Nevertheless, in Sec-
tion 3.3 we also suggest to adapt our approach to bargaining type interactions.

A well-known protocol for iterated auction type negotiations is the FIPA Iterated
Contract Net [11] as depicted in Figure 1. It is particularly suitable for situations in
which a consumer agent attempts to find the best partner among the potential providers
of a required service or product. In many-object negotiations, this can also be a set
of agents if no single participant is able to fulfill the initiator’s demands on its own.
However, this approach requires the initiator to address all potential participants from
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Fig. 2: Resource allocation options and probability of achieving an efficient outcome
for varying agent populations in the (Iterated) Contract Net.

the beginning on as there is no way to include additional agents during the process.
If the initial selection is insufficient to fulfill the initiator’s requirements, the whole
negotiation will fail.

2.2 Agent Decision-Making: Challenges and Related Work

If there is exclusively one single initiator agent at any time, its decision-making in the
aforementioned protocol is simple. It only requires to keep track of the participants’
offers to identify the currently best agreement, accept it when no further improvements
occur, and reject all other proposals. However, this is not the case if several of these
interactions take place concurrently. In this situation, the participants receive several
cfp messages simultaneously and their subsequent responses depend on all of these
messages. Consequently, these interactions mutually influence each other’s outcome
as the initiator agents compete for the participants’ limited capacities. In order to still
achieve the best possible result of the negotiation, an agent must take the actions of all
others into account. That is, it has to find a best response to its counterparts’ behaviors.

To illustrate the aforementioned problem, Figure 2 (a) depicts a simple resource
allocation example. This scenario consists of two consumer agents (A,B) acting as ini-
tiators of concurrent negotiations. They attempt to allocate resources from the provider
agents (C,D) of which each has only enough capacity to fulfill the request of one con-
sumer. If each consumer contacts both providers simultaneously, there are four differ-
ent outcomes possible. Only two of those lead to a successful negotiation result for
both consumers. In the other two, a single consumer receives two offers. Because it can
only accept one of them, the other provider’s resource remains unused due to its refuse
message terminating the negotiation with the unsuccessful consumer agent. Hence, the
agents have a 50% chance of achieving an efficient overall coordination result. In the
general case of a set N of initiators and a setM of participants, an efficient allocation
is equivalent with a surjective mapping (i.e., an onto function) from M to N . Conse-
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quently, the probability for achieving such a result is given by the possible number of
these mappings [18, pp. 84–85;90] divided by the number of all possible interactions.

Peff =

|N|∑
j=0

(
|N|

j

)
· (−1) j · (|N| − j)|M|

|N||M|
(1)

Figure 2 (b) shows this probability for varying agent populations. As the number of
consumers increases, a drastically higher supply of resources (i.e., number of providers)
is necessary to ensure a near efficient coordination result. This holds for both the stan-
dard Contract Net protocol as well as its iterated version because in the latter, a refuse
message terminates the interaction with its sender. Consequently, subsequent iterations
can only refine the result of the first one which renders this protocol inadequate for
concurrent negotiations.

To overcome the limitations of the Iterated Contract Net, we slightly modify the
original FIPA protocol of Figure 1. Instead of narrowing the set of participants to a
subset of the initial receivers in each iteration, we allow for including alternative ones
while keeping their overall number constant. That is, the initiator selects a fixed number
m of participants and replaces those m − k which propose none or only unacceptable
agreements (refuse/reject) with alternative candidates. Thus, it refills the set of receivers
for the next iteration’s call for proposals (cfp) with x new ones to a size of k + x = m.
This enables an iterator to contact participants more than once, even if they refused their
earlier allocation attempts.

Nonetheless, the agents must still find best responses to each other’s activities in the
modified Iterated Contract Net protocol. This is due to the fact that their activities can
still collide which leads to suboptimal outcomes. While they have the ability to continue
their negotiations despite failed allocation attempts, they must avoid these collisions
in future iterations of the interaction. That is, they must anticipate their counterparts’
behaviors and adequately respond to them to secure their intended negotiation results.
This anticipation is crucial for achieving the desired outcomes because otherwise the
agents would mutually disturb their efforts. To facilitate that end, the following concepts
and methods for finding best responses are available from related work.

Determining best responses to other agents’ activities is the subject of game the-
ory [29]. If all agents pursue a best response strategy to the behaviors of the others,
these strategies form a Nash equilibrium [19] in which no single agent can benefit from
changing its current behavior. A Nash equilibrium denotes the agents’ best possible
activities in such a strictly competitive setting. Moreover, by approximating best re-
sponses to the others’ behaviors, an agent maximizes its individual payoff, even if they
fail to establish a corresponding best response in return. Therefore, each agent should
select its actions in an iterated negotiation with respect to the others’ activities.

Existing methods for computing an equilibrium of mutual best responses often
evaluate the structure of the game and are computationally expensive [20]. Neverthe-
less, each agent only has to identify its own best strategy. Consequently, it requires
a decision-making method for finding its most beneficial activities, given the actions
of the others. A well-known technique for this is the minimax rule [28] of 2-player
decision-making and its generalization for n-player settings [14]. By assuming the oth-
ers to pursue their most beneficial courses of actions, this rule selects the best response
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to those behaviors. As a result, an equilibrium emerges from the agents’ mutually de-
pendent action selections.

However, in concurrent negotiations, the minimax approach requires an agent to be
aware of the other participating agents, their possible actions as well as their prefer-
ences (i.e., their scoring functions for the interaction’s outcome). For competitive dis-
tributed negotiations, disclosing these trade secrets is inappropriate [10]. Consequently,
the agents act in a partially observable environment. In this environment, they must
coordinate their negotiation behaviors while preserving the privacy of information. To
achieve the latter, combinatorial auctions [8] provide a means for computing the best
allocation of goods or services in a mediated interaction process. In these auctions, the
participants express their preferences as bids on combinations of offered items. While
such a bid represents the result of an agent’s valuation of an offer, it hides the agent’s
private method for attaining that assessment. Moreover, combinatorial auctions are par-
ticularly suitable for many objects as the participants can express bids on arbitrary com-
binations. Nonetheless, the winner determination is a centralized process which creates
a computational bottleneck [21]. This is undesirable in distributed systems.

To overcome this problem, agents should adapt their behaviors during a negotiation
according to their experiences throughout that process [27]. Hence, we propose to en-
able the agents to learn best responses to each other’s actions from observations of their
personal performance. Deriving beliefs about successful behavior from the outcome of
past interactions has been shown to enable the approximation of market equilibria in re-
peated trading activities [12]. That is, buyers and sellers determine mutually acceptable
prices for the traded items by estimating the probabilities of reaching an agreement for
potential price offers. Nevertheless, this requires the presence of a common currency
to express those prices. In order to allow for best responses according to generic utility
assessments, we rather apply reinforcement learning [26] to multiagent negotiations.
This technique enables the agents to anticipate the expected results of their actions by
observing and learning from the outcome of their previous activities. By adapting their
behavior accordingly, they can establish of social order within the negotiation through
a process of self-organization. They implicitly generate interaction practices which re-
flect the identified best responses to the unobservable activities of their competitors. To
accomplish this, an agent receives a reward when performing an action from which it
learns an estimation of the expected reward for potential future actions. Subsequently,
it can select the next action based on this estimation. Multiagent reinforcement learn-
ing [6] has been applied successfully to approximate best response behaviors in dis-
tributed coordination tasks [7, 5]. Therefore, it is a promising approach for determining
an agent’s most beneficial strategy in concurrent iterated negotiations.

3 Multiagent Self-Organization in Iterated Negotiations

In the following, we apply multiagent reinforcement learning to concurrent iterated
many-object negotiations. Section 3.1 interprets them as repeated games and provides
a formal notation for the agents’ decision-making environments and behaviors. Subse-
quently, Section 3.2 motivates our approach to social self-organization, introduces its
sociological foundations, and applies a stateless version of the Q-learning approach to
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agent decision-making. Finally, Section 3.3 discusses criteria for determining accept-
able offers to terminate such a negotiation.

3.1 Iterated Multiagent Negotiations as Repeated Games

In order to facilitate a better understanding of the interdependencies of concurrent agent
activities in iterated negotiations, we formalize them using the terminology of game the-
ory and reinforcement learning. From this point of view, a single iteration of a multia-
gent negotiation is a static (stateless) game. In such a game, each of the agents performs
one action and receives a reward depending on all simultaneously executed actions. Its
formal definition is as follows [6].

Definition 1 (Static Game). A static game is a triple 〈N ,A, R〉. N is a set of agents
being indexed 1, . . . , n. Each agent i ∈ N has a finite set of atomic actions Ai. Thus,
A = (A1, . . . ,An). R = (R1, . . . ,Rn) is the collection of individual reward functions
for each agent i. Each Ri : A1 × . . . × An → R returns i’s immediate reward for the
simultaneous execution of agent actions a1, . . . , an with ∀ j ∈ N : a j ∈ A j.

In a concurrently executed Contract Net, the set of agents N consists of the initia-
tors of the simultaneous negotiations. Each of them selects a participant to send its call
for proposals specifying the negotiation object. Thus, agent i’s individual actions Ai

contain all of these possible messages in conjunction with their respective receivers. In-
stead of distributing the rewards directly, the participants subsequently respond with a
proposal or a refuse message. A participant’s response depends on the entirety of mes-
sages it received in the current iteration. Each initiator can rate its individually received
response by calculating its respective payoff (i.e., the negotiation’s expected outcome if
it accepts the received offer). Thus, an agent obtains the conditional reward for its ac-
tion, even though it is unable to observe the actions of the others. Iterating this one-shot
negotiation several times results in a stage game [6]. This repeated game describes the
agents’ decision-making environment during concurrent iterated negotiations. Only in
its final iteration, an agent bindingly accepts or rejects its received offer. Until then, it
can use the stage game to learn the most beneficial actions for that last static game.

In order to accomplish this learning, the agents repeatedly observe the payoff of their
respective activities which enables them to reason about their expected reward in further
iterations. A rational agent has the objective to maximize its personal payoff. Hence, it
attempts to adopt a behavior which is a best response to the other agents’ actions. In
game theoretical terms, a deterministic best response strategy returns an action which
maximizes an agent’s payoff, given the actions of all others [6].

Definition 2 (Best Response). A best response of agent i ∈ N to the other agents’
actions a1, . . . , ai−1, ai+1, . . . , an is an action a∗i ∈ Ai which leads to the highest reward
given those activities: ∀ai ∈ Ai : Ri(a1, . . . , a∗i , . . . , an) ≥ Ri(a1, . . . , ai, . . . , an).

In a competitive environment, each agent strives to maximize its individual payoff

on its own. Therefore, all agents mutually attempt to find a best response to each other’s
activities. Such a situation, in which no single agent can beneficially deviate from its
current behavior, forms a Nash equilibrium [19]. For deterministic agent strategies, this
is defined as follows.
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Definition 3 (Nash Equilibrium). A Nash equilibrium is a vector
(
a∗1, . . . , a

∗
n

)
, such

that ∀i ∈ N , each action a∗i is a best response to the others.

A Nash equilibrium does not ensure that the agents maximize their common payoff

in the form of a social welfare optimum.1 Nonetheless, it denotes each agent’s best
possible action relative to the others’ activities if all agents attempt to maximize their
individual payoff. The objective of each agent in concurrent iterated negotiations is to
identify such a best response action in order to select it in its decision-making.

Additionally, there are negotiations in which not all agents compete with each other.
If two or more agents pursue a common goal, they have to negotiate together in order
to acquire the necessary resources or commission required services. In this case, these
agents can group together in teams [23]. The set of those multiagent teamsMT ⊂ 2N

is a partition of the set of individual agents. The members of each team MT ∈ MT
cooperate in their interactions. To that end, they combine their individual rewards in a
common social welfare function.

Definition 4 (Social Welfare Function). A social welfare function of team MT ∈ MT
maps all team members’ rewards to a single value: welfare : R|MT | → R.

A team’s welfare indicates the joint performance of its member agents by aggre-
gating their individual rewards. Several different aggregation methods are available for
implementing that function [9]. The most common of those is the utilitarian welfare
function which returns the sum of the team members’ rewards:

∑
i∈MT Ri(a1, . . . , an).

In a negotiation, a team acts as a single initiator agent. That is, a particular member
agent mgr ∈ MT becomes the team manager. That agent sends cfp messages on behalf
of all members and collects the respective rewards for the responses. Then, it aggre-
gates them in the team’s welfare function. This is equivalent to a single agent negoti-
ating several objects. As a result, multiagent teams attempt to find joint best responses
to other teams’ as well as to individual agents’ activities. This replaces the member
agents’ rewards in Definition 2 with the team’s welfare. Consequently, a Nash equilib-
rium consists of the best combination of actions for the team given the non-members’
best possible responses to those activities.

However, both individual agents and multiagent teams are unable to directly deter-
mine whether their concurrent activities form a Nash equilibrium. This is because there
is no entity which can observe all of these behaviors. Instead, they must derive the best
responses solely from their payoffs for the performed actions. If all agents and teams
succeed in this endeavor, a Nash equilibrium emerges from their distributed efforts. To
that end, the next section specifies our approach to self-organizing negotiations which
relies on the anticipation and an adaptation of agent behaviors.

3.2 Anticipation and Behavior Adaptation for Iterated Negotiations

Niklas Luhmann’s sociological theory of communication systems [15, 17] provides a
fundamental inspiration for our approach to self-organizing negotiations. According to

1A famous example for this is the prisoner’s dilemma in which the equilibrium point is the
only strategy combination not belonging to the Pareto frontier.
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this theory, social order derives from actors mutually expecting each other’s activities.
These expectations emerge from the actors’ interactions rather than reflecting static
behavioral norms or fixed channels for communication. An actor observes his coun-
terpart’s behavior and selects his activities according to the other’s expected reaction.
Thus, an actor’s action selection depends on observed activities of others and vice versa.
This feedback loop of observation and expectation enables social structures to emerge
from an initial state of ignorance2 by means of interaction processes. These structures
guide subsequent executions of those very processes. Luhmann refers to the generation
of social structures by the term self-organization [16].

In previous work, we have applied expectations to the decision-making of software
agents [1–5]. These agents memorize the observable effects of their own activities. Each
time it has to select an action, such an agent evaluates its options according to its mem-
ory entries. That is, it searches for an action which it expects to predictably lead to
an advantageous response. After executing the selected action, it observes the actual
response by the addressed agent and updates its memory with that observation. That
process either increases or decreases the agent’s expectation for the selected activity
depending on whether it under- or overestimated its outcome. This renewed expectation
then becomes available for the anticipation of activity results in further interactions.

The aforementioned process enables a software agent to anticipate the outcomes of
its activities without having to know their exact causes, the identities of its competi-
tors, and their respective capabilities. To that end, it assumes its past observations to
be representative for future events. It learns which of its potential interaction partners
best to select in order to reach its goals. In a negotiation, this allows for an initiator
agent to identify those participants which can offer the most advantageous deals. To
achieve this effect, we model the the process of generating expectations and selecting
activities according to them by means of reinforcement learning [26]. In a stage game,
this technique allows for the agent to learn from its experiences to increase its future
performance.

A well-understood algorithm for the case of one single learning agent is Q-learn-
ing [30]. In its stateless form, this algorithm estimates expected rewards (action payoffs)
as Q-values Q(a) for each possible action a [7]. A learning agent uses the following
update rule to refine its estimation when observing a reward R(a) for action a.

Q(a)← Q(a) + λ · (R(a) − Q(a)) (2)

If each action is sampled infinitely often, the agent’s Q-values converge to the unobserv-
able true values Q∗ for every learning rate λ with 0 < λ ≤ 1 [30, 7]. This enables the
learning agent to select its activities according to their expected payoff values. Hence,
as the values converge, it can identify its individually optimal action.

However, in concurrent iterated negotiation processes, several initiator agents act
simultaneously. This results in interdependent effects of their actions as formalized in

2In this state of double contingency, both participants are unable to act because each of their
activities depends on the other’s previous actions and they lack any existing expectations for
selecting them. However, Luhmann notes that this is a highly unstable fixpoint of the interaction’s
dynamics which never actually occurs in real encounters [15, 17]. Instead, every slight action
allows for generating initial expectations which facilitate the emergence of social order.
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the preceding section. In fact, the convergence property of single agent Q-learning does
not hold for a distributed setting in which several agents simultaneously adapt their be-
haviors. This is because their interdependent activities result in non-stationary rewards.
These rewards depend on the combination of all concurrently executed actions. Con-
sequently, an agent can observe changing effects of its actions without being able to
influence them or to identify the cause of these changes. For instance, if two agents
attempt to allocate resources from two resource providers, the first initiator may re-
ceive offers or rejects of its attempts depending on the simultaneous actions of the other
initiator. Even if the first agent always selects the same action, it will be unable to accu-
rately anticipate the reaction because the second agent may change its behavior. Thus,
an agent’s interaction environment changes during its learning process which can render
its existing expectations invalid.

The same situation arises in social systems. According to Luhmann, communica-
tions are guided by expectation structures in these systems [15, 17]. Through repeated
changes and mutual adaptations, these structures stabilize themselves and social order
emerges. The reason for this effect lies in the reciprocal nature of expectations. All ac-
tors simultaneously generate and refine their expectations. In this process, they narrow
the range of actually occurring communications within the system. This increases the
likeliness of communications being successful. Hence, the participating actors can mu-
tually anticipate each other’s reactions to their activities and act accordingly instead of
arbitrarily changing their behaviors. While they retain the ability to react in an unex-
pected manner, this makes communications sufficiently predictable to facilitate goal-
directed social coordination.

In the following, we transfer the preceding considerations to concurrent multiagent
negotiations. If all agents in that setting develop expectations about the outcomes of
their activities and their actions depend on those expectations, those very outcomes
become increasingly predictable. This is because they narrow the range of selected ac-
tions. If they also maximize the payoffs they receive from the corresponding responses,
the agents establish a Nash Equilibrium of mutual best response activities. Neverthe-
less, conventional reinforcement learning is unable to bring about that effect. It suffers
from several agents mutually disturbing their adaptation efforts by changing their be-
haviors. When an agent perceives an action to yield inferior outcomes, it has to change
its selection and search for an adequate alternative option. This change can interfere
with the activities of another agent. That agent is then also obliged to modify its behav-
ior. Therefore, a chain reaction of adaptations can occur in which disturbances build up
and the agents are unable to obtain social order. To avoid this and instead enable the
interactions to converge to social order, the agents’ action selection method must fulfill
two additional conditions [7, 5].

1. At any time, every possible action of an agent must have a non-zero probability of
being selected.

2. An agent’s action selection strategy must be asymptotically exploitive.

Condition 1 ensures the infinite sampling of all agent actions for t → ∞. An agent
must always have the opportunity to explore alternative courses of action to be able to
react to changes of other agents’ behaviors which affect its own performance. Further-
more, that condition prevents the agents from executing strictly correlated explorations.
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Fig. 3: Behavior of a learning initiator agent in the Iterated Contract Net

That is, no combination of agent actions becomes impossible to occur. This is an exten-
sion of the infinite sampling requirement for single agent Q-learning: In a multiagent
setting, each combination of actions must be executed infinitely often due to the pay-
off’s dependence on all concurrently triggered other actions. Condition 2 requires the
agents to pursue a decaying exploration strategy. This decreases the probability of con-
current exploration activities over time. Hence, the agents become less likely to disturb
each other as their behaviors become increasingly predictable. As a result, their expec-
tations can settle to stable social structures. Empirical evidence shows that these agents
successfully establish mutual best responses in a variety of settings [7, 5].

In order to apply this technique to iterated negotiations, we construct the initiator
agent’s behavior as depicted in Figure 3. This behavior extends the message passing
activities as specified in the FIPA Iterated Contract Net protocol definition [11] with an
initialization step as well as the following repeatedly executed activities.

1. Selecting the receivers and contents for the next calls for proposals.
2. Learning from the observed responses.
3. Deciding on whether to terminate or continue the negotiation.

When entering a negotiation, each learning agent i ∈ N initializes its Q-Base
(i.e., its memory) Qi in which it stores the expected payoffs Qi(ai) for all its possi-
ble atomic actions ai ∈ Ai. Its individual actions Ai consist of all cfp messages, given
by their possible contents and receivers. The message contents depend on the agent’s
preferences toward the negotiation object and the receivers correspond to the possible
providers of that object. In the case of a multiagent team, the team manager maintains
such a memory for each of the member agents. The following considerations cover the
decision-making of such a team manager because it subsumes the special case of an
individual agent (being equivalent to a team with a single member).

Subsequently, the agent enters the iterated part of the negotiation. To select the next
action, it considers all messages ai ⊆ Ai and looks up their stored Q-values Qi(ai). A
team manager does this for every member agent individually. In that case, maintaining
a Q-base for the atomic actions instead of their combinations keeps the required storage
space small when using a lookup table [5]. Nevertheless, this requires the corresponding
rewards Ri(ai) to be mutually independent. This is because the team manager must
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aggregate those Q-values in the team’s welfare function to identify the expectedly most
beneficial message combinations maxAMT ∈ A1 × . . . ×A|MT |.

maxAMT = arg max
AMT∈A1×...×A|MT |

∑
i∈MT

Qi (ai)

 (3)

with ai ∈ AMT being the selected action for team member i

Choosing an action set from maxAMT corresponds to a greedy strategy which max-
imizes the team’s expected payoff based on its experiences so far. For that purpose,
Equation 3.2 computes the utilitarian welfare of the expected action outcomes. This
method maximizes the average payoff of the team’s members without favoring par-
ticular ones over others as long as the expectations accurately anticipate the actual
outcomes. However, a team manager is unable to guarantee this because it is initially
unaware of the available deals in the negotiation and other agents can change their be-
haviors which may provide potentials for improving its performance. Hence, in order to
find out whether there is an even better option, the agent also has to explore alternative
actions. To this end, we propose to use an ε-greedy strategy. That is, in iteration t of the
negotiation, the manager selects the next actions AMT ,t from maxAMT with a probability
of 1 − ε (with 0 < ε ≤ 1). If there is more than one best option, it chooses randomly
among them. Alternatively, with a probability of ε, the agent selects AMT ,t at random out
of all action combinations inA1 × . . .×A|MT |. Moreover, to ensure the aforementioned
asymptotically exploitive selection with non-zero probabilities, it employs a decaying
ε-greedy strategy. This requires a sequence εn with limt→∞ εt = 0 and ∀t ∈ N : εt > 0.
An example meeting these requirements is the following sequence: ∀t > 0 : εt = 1

ln(t+2) .
This sequence leads to high exploration rates in the beginning of the negotiation which
decrease over time. Once an agent has identified a highly rated combination of actions,
it increasingly tends to stick to those actions as time proceeds.

After selecting the next actions, sending the chosen messages, and collecting the
respective responses, the team manager proceeds with the learning part of its behavior.
To assess the usefulness of the selected actions AMT ,t, it evaluates the response messages
result(ai,t), ∀ai,t ∈ AMT ,t for each member agent i ∈ MT by means of an individual utility
measure Ui : {result(ai) | ∀ai ∈ Ai} → [0, 1]. It uses the result of this calculation as the
action’s immediate reward Ri(ai,t).

Ri(ai,t) = Ui(result(ai,t)) (4)

As the response messages depend on the concurrent actions of all agents participating in
the negotiation, their utility implicitly reflects these actions as well. Thus, it is sufficient
for the team manager to evaluate only the observable responses instead of receiving
a conditional reward for all simultaneous activities. In order to learn from this obser-
vation, it subsequently applies the standard update rule as in Equation 2 to modify its
stored Q-value Qi(ai,t) for all performed actions ai,t ∈ AMT ,t. In the succeeding iteration,
the refined entries in the Q-Base serve as the new Q-values for these actions.

According to the aforementioned convergence property of the Q-learning rule, an
infinite number of these iterations will lead to each agent and multiagent team learning
to anticipate the best response to the others’ activities. Hence, a Nash equilibrium will
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emerge from these distributed learning processes in concurrent negotiations. Nonethe-
less, an infinite negotiation never comes to a final result. To avoid this, each negotiation
initiator must decide after an iteration either to accept its received response messages as
the result and terminate the negotiation or to continue it in the attempt to reach a better
outcome. That is, while learning the best behavior for the repeated interaction process,
it must eventually apply its findings to one single iteration to bring about a result of
the negotiation. To facilitate this decision-making, the next section discusses individual
tactics for terminating iterated negotiations.

3.3 Termination of Iterated Negotiations

A learning agent as specified in the preceding section is unable to determine whether
it has already developed a best response behavior or not. Furthermore, it cannot guar-
antee that stable social structures have emerged among all negotiating agents. This is
because it would have to know all other agents’ possible actions as well as their actual
selections, the participants’ respective responses, and the agents’ utility measures for
evaluating these responses. However, disclosing this information is inappropriate for
competitive negotiations (cf. Section 2.2). As an alternative, negotiation tactics enable
reaching individually acceptable agreements without requiring additional information.
These tactics model an agent’s bidding behavior in bargaining type negotiations con-
sisting of offers and counter-offers. They can depend on the amount of time or other
resources being available as well as on the observable bidding behavior of the negoti-
ation opponents [10]. Such a tactic provides a function which approaches the agent’s
private reservation value in the course of the negotiation. This value denotes the mini-
mal offer it is willing to accept. Thus, unless the agents come to a better agreement at
some time during the negotiation, the reservation value denotes its last offer on which it
insists until the end of the negotiation. If at some point in time neither agent concedes
any further, the negotiation terminates without success.

In contrast to bargaining negotiations, in auction type mechanisms like the Iterated
Contract Net it is unnecessary to generate counter-offers. Instead, the initiator agents
only require a decision function which indicates whether or not one or more received
proposals are acceptable. To this end, an agent must consider the payoff of the current
offers. These values are already available from the reinforcement learning algorithm
(Equation 4). Thus, we define agent i’s decision function in dependence of its utility
measure Ui for evaluating the perceived results of its actions (with the manager of a
multiagent team using the utility measures of all member agents). In analogy to the
bargaining tactics, the agent has a reservation level of utilities Ures. This is the minimum
utility it will accept for the last offers of the negotiation. If the reservation level turns
out to be unreachable, it will terminate the negotiation without coming to an agreement.

However, in order to maximize its payoff, the agent must explore alternative ac-
tions in the course of the negotiation. Therefore, it should abstain from choosing the
first option exceeding its reservation level as the final one. Only if it fails to achieve
a better result, the agent should accept the current offer. To this end, we introduce an
agent’s acceptance level of utilities Uacc which denotes the minimum utility for the cur-
rent offer to be acceptable. In the case of a multiagent team, the common welfare of
the member agents denotes that utility. As the team manager attempts to maximize the
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Fig. 4: Termination criteria based on acceptance and reservation utility levels

members’ joint payoff, it has to compare the team’s welfare to the acceptance level in
order to evaluate whether the outcome for the team is acceptable or not. Varying over
time during a negotiation, the acceptance level resembles an agent’s tactic in bargaining:
It consists of a function describing the agent’s behavior of conceding to its reservation
level. To enable the agent to benefit from its learning ability, this function starts from a
sufficiently high value and decreases monotonically over time. As a result, the agent re-
jects all but the best offers in the early iterations. Nevertheless, it becomes increasingly
inclined to compromise about that utility during the negotiation process.

Following from these considerations, a team manager successfully terminates a ne-
gotiation in iteration t if the received offers’ aggregated utility exceeds the current ac-
ceptance level: Uacc,t <

∑
i∈MT Ui(result(ai,t)) with ai,t ∈ AMT ,t being the selected action

for team member i. That is, the team manager computes the welfare of the whole team
and decides whether the result is acceptable as the negotiation’s outcome. Furthermore,
it terminates the process without success if the acceptance level falls below the reserva-
tion level: Uacc,t < Ures. In the latter case, the team failed to reach an agreement with its
interaction partners under the least acceptable conditions. Figure 4 depicts these termi-
nation criteria for a range of acceptance level functions. Analogously to the concession
behaviors in bargaining negotiations, these functions tend toward either the well-known
Boulware or the Conceder tactics [10]. While the former attempts to reach a highly val-
ued agreement as long as possible, the latter quickly approaches the reservation level.

To implement these tactics, we modify the polynomial time dependent function pre-
sented in [10] according to the aforementioned considerations. In the resulting function,
the acceptance level Uacc,t in iteration t ranges between the initial value Uacc,0 and the
reservation level Ures as long as t adheres to a given deadline tmax. Moreover, the accep-
tance level is strictly monotonically decreasing if Uacc,0 > Ures and tmax is constant.

Uacc,t = Uacc,0 − (Uacc,0 − Ures) ·
(

t
tmax

)β
(5)

According to this equation, the negotiation is guaranteed to terminate for all tmax < ∞.
The parameter β controls the agent’s concession behavior: While it pursues a Boulware
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tactic if β > 1, each β < 1 leads to a Conceder behavior. The intensity of these tactics
increases the more β deviates from 1 (with β = 1 denoting the neutral linear tactic).

By means of Equation 5, an agent controls its negotiation behavior. Setting tmax to
a fixed point in time allows for modeling situations in which the agents must finish
their negotiation before some deadline exceeds. In conjunction with the reinforcement
learning technique, this termination method enables agents in concurrent multiagent
negotiations to adjust their behaviors according to each other’s distributed activities.
While the learning approach facilitates an agent’s anticipation of best responses to the
unobservable behaviors of others, the termination criteria control the negotiation’s du-
ration. Moreover, deriving from negotiation tactics in bargaining, the latter even offer
the possibility to transfer this approach to bilateral negotiations. As the acceptance level
denotes the minimum utility for an agreement, an agent can invert its utility measure
to generate counter-proposals to the perceived offers. If a common currency is used,
this is easy to accomplish by mapping the learned values to price offers [12]. However,
we leave this adaptation as well as the analysis of its requirements and implications to
future research.

4 Evaluation

In this section, we evaluate our approach to self-organizing multiagent negotiations
in a multiagent simulation. This evaluation covers the dynamics of the agents’ learning
efforts as they establish expectations to anticipate the behaviors of their interaction part-
ners. In the following, Section 4.1 describes the design of the simulation experiments
while Section 4.2 presents and discusses the results.

4.1 Experiment Design and Setup

In order to evaluate the proposed learning approach in iterated multiagent negotiations,
we apply it to a distributed resource allocation problem using the simulation system
PlaSMA [24]. Our scenario is an abstraction from a kind of problems occurring fre-
quently in real-world applications like production scheduling and logistics [5]. This
scenario contains a set N of resource consumer agents which concurrently negotiate
with the resource providers in set M as depicted in Figure 5 (a). The member agents
of these sets are indexed 1, . . . , n for the consumers and 1, . . . ,m for the providers.
In addition, the set of consumers is partitioned into n

k teams of size k. Consequently,
only every kth consumer takes an active part in the negotiation as a team manager.
Each consumer team requires k resource units while every provider has exactly one unit
available. Because |M| = |N|, there is sufficient supply for fulfilling that demand. Thus,
the agents have to find an appropriate bijection between the set of consumers and the
set of providers. In this case, each consumer allocates its required amount of resources
without interfering with the others.

To approximate a mutual best response allocation in that setting, the team managers
act as initiators of a concurrent iterated negotiation. In each iteration, a manager selects
k providers for a call for proposals, one for each team member. If a provider still has
its resource unit, it sends an offer for the allocation; otherwise it sends a refusal. In the
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Fig. 5: Many-object resource allocation scenario with n consumers and m = n · k
providers

case of a provider receiving two or more allocation attempts, it randomly selects one
consumer for its offer and refuses all other cfps. The initiators evaluate these responses
by means of the following utility function for each team member.

Ui(rai,t) =
1
k
·

 |0.5m−|i− j||
0.5m · 0.9 + 0.1 if rai,t is a propose message

0 otherwise
(6)

with
∀ai,t ∈ AMT ,t : rai,t = result(ai,t)

According to Equation 6, each agent i ∈ N has an individual utility function. If the
response to the selected action is an offer, its utility ranges between 0.1

k and 1.0
k depend-

ing on the respective sender. Otherwise, it is zero. Hence, the usefulness of the different
providers’ resources varies for each consumer. Figure 5 (b) depicts the resulting func-
tion. There is only one provider offering an optimal payoff. Because these providers
differ for all consumers, there is exactly one optimal resource allocation (namely that
allocation which maps all consumers to the providers with the same index). Being un-
aware of the described scenario and the actions of other agents, this optimum is difficult
to achieve for the team managers. In its attempts to maximize its performance, a team
manager has to find the best activities for each of its members while competing with
the managers of other teams for those results. This requires it to search for resource
providers which reliably offer high payoffs. The agents must anticipate these outcomes
in order to maximize their performance because an arbitrary selection of actions and
mutual disturbances will lead to poor coordination results.

Our evaluation assesses the capability of the proposed approach to approximate
an allocation with the aforementioned properties. It focuses on the agents’ learning
dynamics in order to evaluate the impact of their self-organization during the course of
a negotiation. To this end, we test it in a scenario with a set of 1200 consumer agents
which we subdivide into 20 teams of 60 members each. We vary the team managers’
learning rates λ between zero and one in order to evaluate their impact on the learning
dynamics. In this context, λ = 0 means that an agent maintains no expectations at all.
Thus it selects every action at random. This serves as a baseline configuration to mark
the lower bound of the expectable coordination performance.

For each agent i ∈ N and every atomic action ai ∈ Ai, we set the initial Q-values to
Qi(ai) = 0. This leads to a purely explorative behavior in the beginning of the negotia-
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Fig. 6: Number of teams participating in the negotiation over the course of time.

tion and in case of repeated refusals. This initialization and randomized action selection
avoids a premature over-estimation of potential agreements. Nonetheless, as soon as an
agent observes a (partially) successful combination of actions, it utilizes the ε-greedy
strategy to exploit its experience. Thus, the agent increasingly tends to stick to those
actions which have been beneficial in past iterations.

To terminate the negotiation, the agents employ a time dependent heuristic as speci-
fied in Equation 5. They use an initial acceptance level of Uacc,0 = 1, a reservation level
of Ures = 0.0, a Boulware negotiation tactic (β = 3), and a deadline of tmax = 800 iter-
ations. The Boulware tactic increases the impact of their learning as the agents slowly
concede to their reservation levels. Each experiment consists of 120 simulation runs.

4.2 Experiment Results and Discussion

Figure 6 depicts the average number of consumer agent teams participating in the ne-
gotiation over time for varying learning rates. It shows that the agents’ learning efforts
significantly reduce the time required for identifying an acceptable negotiation result.
While the non-learning agents require more than 700 iterations for most of them to
terminate their negotiations, the learning rates of λ = 0.2 and λ = 0.4 achieve this in
about 500 iterations. The higher learning rates result in durations between those values.
These results indicate that the generation of social order has a large impact on the time
required for finding an appropriate resource allocation. The team managers learn which
resource providers to contact in order to receive advantageous offers. Thus, they tend to
repeatedly select those options which provide high payoffs. Although they occasionally
explore alternative ones, they only adopt them if these actions provide a significant ad-
vantage over the already known activities. Moreover, maintaining expectations for every
single action of individual team members enables the team managers to systematically
change their selections for those individual members. Thus, their activities become both
increasingly stable and successful for small learning rates which leads to early identifi-
cations of acceptable results. By contrast, higher learning rates (λ ≥ 0.6) lead to faster
adoptions of alternative activities. This can lead to mutual disturbances between the
multiagent teams. Hence, they require more time for their negotiations (while still be-
ing superior to a non-learning approach).
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Fig. 7: Development of the received offers’ welfare as well as differences between the
expected and actually observed outcomes for the teams over time.

Nevertheless, the duration of a negotiation is only loosely connected to the actu-
ally achieved result quality. To complement the preceding results from that perspective,
Figure 7 (a) depicts the development of the average team welfare during the negotia-
tion. This confirms the aforementioned effects of the learning rate. The random action
selection results in largely constant welfare values at a low level around 0.35. Con-
trastingly, the learning approach leads to gradually increasing welfare values over time.
This particularly holds for small learning rates. Therefore, the agents adopt success-
ful behaviors and refine them if they manage to find superior options for specific ac-
tions. As their activities become increasingly predictable, they learn to anticipate the
corresponding outcomes. This is evident in the later iterations where the welfare in-
creases rapidly. In these iterations, the first teams terminate their negotiation processes
by permanently allocating the offered resources. Other agents cannot receive any fur-
ther offers from the corresponding providers. Consequently, the results of those actions
become perfectly predictable. The more teams finish their negotiation, the easier it is
for the remaining ones to adapt their behaviors accordingly. While the average welfare
for these agents is still suboptimal, its development shows that they are able to estab-
lish expectations to successfully anticipate and increase the outcomes of their activities.
This enables them to drastically outperform non-anticipating agents. In particular, the
anticipative approach improves the final result by up to more than 130% (final result of
0.818 ± 0.001 for λ = 0.4 compared to 0.356 ± 0.001 for λ = 0.0).3

Finally, Figure 7 (b) presents the differences of the aforementioned observed wel-
fare values and the expected ones for the selected actions. A small difference denotes
an accurate anticipation of the results while a large one indicates an agent’s failure to
expect the actual outcome of its activities. The figure shows that all positive learning
rates lead to a convergence of these differences toward zero. As a result, the agents
are able to anticipate their negotiation partners’ offers. High learning rates lead to even

3All deviations are half-widths of the 99% confidence interval.
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smaller deviations from the real outcomes. This confirms that the agents rapidly adapt
their expectations in that case which leads to the discussed tendency to disturb each
other. Because they are equally as fast in their reactions to those disturbances, they re-
tain their expectations’ accuracy. However, this hampers their ability to generate stable
social structures. By contrast, agents with lower learning rates accept slightly larger
deviations from their expectations without overreacting to them. This leads to the pre-
viously observed higher performance and the successful emergence of social order.

5 Conclusions and Outlook

In this paper we have proposed the application of multiagent reinforcement learning to
concurrent iterated negotiations. We have analyzed the standard negotiation mechanism
for multiagent coordination. This analysis has shown that the mechanism is unable to
ensure successful negotiation outcomes. To overcome its shortcomings, our approach
enables negotiating agents to anticipate each other’s behaviors and adapt their own ac-
tivities accordingly. In that context, the agents can group together to cooperate with
each other within a team while several of these teams still compete for the best negotia-
tion results. The anticipation of their activities’ effects allows for the agents’ distributed
approximation of best responses to their counterparts’ actions without requiring them to
directly observe those actions. Taking inspiration from Luhmann’s theory of social sys-
tems [15, 17], we enable the learning agents to derive expectations from their received
offers. The resulting behaviors are generated in a self-organizing process of anticipation
and adaptation. Therefore, they are an emergent effect of the agents’ concurrent learn-
ing efforts. The agents approximate this result by means of individual decision criteria
for the termination of a negotiation process.

For the empirical evaluation of this approach, we have applied it to a multiagent
resource allocation scenario. The results show that the learning agents successfully an-
ticipate each other’s behaviors. Their performance in terms of negotiation time and
achieved payoff depends on their applied learning rates. If these rates are too small,
they are unable to develop any expectations at all. If they are too large, the agents
tend to overreact to their observations. Consequently, they require a balanced parameter
setup to facilitate the generation of stable social structures. In that case, their adaptation
method enables them to achieve high payoffs in small amounts of time. Nevertheless,
all tested parameters lead to (drastic) improvements of the agents’ average performance
in comparison with a non-anticipative benchmark setting.

To summarize, the contributions and results of this paper are as follows.

– Anticipation enables software agents to select adequate activities in a partially ob-
servable negotiation setting.

– Social systems theory provides valuable inspiration for implementing anticipative
behaviors in artificial agents. Their mutual anticipation of those behaviors leads to
the emergence of social order among multiple agents.

– Anticipative behaviors improve the performance of software agents in negotiations
by up to more than 130% (in the evaluated setting with the tested parameter values).

Nevertheless, there are still questions open for future research. While we have
briefly mentioned the possibility to transfer our method to bargaining type negotiations,
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its actual implementation and evaluation will be subject to future work. Moreover, ad-
ditional analyses of our existing approach will facilitate a better understanding of its
components and their interaction. In particular, to guarantee the convergence of the
reinforcement learning part to mutual best responses, an analytical assessment of self-
organizing negotiations is necessary. Additionally, further empirical evaluations will
focus on different scenarios with heterogeneously parameterized populations to assess
the capabilities and limitations of distributed learning for the anticipation of agent be-
haviors in concurrent iterated negotiations.
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